Monday, March 7; 10-10:50am
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- You should have access to a calculator or some other computing device, and to the normal and t distribution tables. Instead of the tables, you are welcome to use the statistical functions available on your computing device.
- Answer all questions and clearly indicate your answers; upload the solutions to GradeScope.

- Each problem is worth 10 points.

Problem 1. Let X_{1}, \ldots, X_{25} be an independent random sample from a normal population with unknown mean μ and unknown variance σ^{2}. It is known that

$$
\sum_{k=1}^{25} X_{k}=250, \quad \sum_{k=1}^{25} X_{k}^{2}=3100
$$

Construct the 95% confidence interval for μ.
To get full credit, indicate the values of the sample mean, sample standard deviation, and the quantile of the corresponding distribution you need to construct the confidence interval.

Problem 2. Let X_{1}, \ldots, X_{n} be an independent random sample from the $\operatorname{Gamma}(3, \theta)$ distribution; in particular, the pdf of each X_{k} is

$$
f(x ; \theta)=\frac{1}{2 \theta^{3}} x^{2} e^{-x / \theta} 1(x>0) .
$$

Construct the MLE of θ.
Problem 3. A study reports that freshmen at public universities work 11.1 hours a week for pay, on average, and the s_{n} is 8.6 hours; at private universities, the average is 9.2 hours and the s_{n} is 7.1 hours. Assume these data are based on two independent simple random samples, each of size 1,000 . Is the difference between the averages due to chance? Explain your conclusion by stating the corresponding null and alternative hypotheses and computing the p-value.

Problems 4. Let X_{1}, \ldots, X_{n} be an independent random sample from the $\operatorname{Gamma}(3, \theta)$ distribution; in particular, the pdf of each X_{k} is

$$
f(x ; \theta)=\frac{1}{2 \theta^{3}} x^{2} e^{-x / \theta} 1(x>0) .
$$

Construct the most powerful test with Type-I error equal to 0.05 for testing $H_{0}: \theta=1$ against $H_{1}: \theta=2$.

Problem 5. For the first-year students at a certain university, the correlation between SAT scores and the first-year GPA was 0.68 . Assume that the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT was 40%.

