Fall 2017, MATH 408, Exam 1

Monday, October 16, 2017; 1-1:50pm
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Name: \qquad

Circle the time of your discussion section: 2 pm 3 pm

Instructions:

- No books or notes of any kind.
- Turn off cell phones.
- You should have (and use!) a calculator and three distribution tables: normal, t, and χ^{2}. You are welcome to use statistical functions in your calculator instead of the tables.
- Answer all questions and clearly indicate your answers.

- Each problem is worth 10 points.

- Show your work! Points might be taken off for a correct answer with no explanations. Wrong answer with no explanations is worth zero points.

Problem	Possible	Actual
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Problem 1. Given the set of numbers 39, 54, 61, 72, 59, 49, and assuming that this is a sample from a normal population, construct the 90% confidence interval for the standard deviation.

Problem 2. Given a normal population with mean -1 and unknown standard deviation σ, construct the MLE of σ.

Problem 3. A study reports that freshmen at public universities work 10.2 hours a week for pay, on average, and the s_{n} is 8.5 hours; at private universities, the average is 8.1 hours and the s_{n} is 6.9 hours. Assume these data are based on two independent simple random samples, each of size 1,000 . Is the difference between the averages due to chance? Explain your conclusion by stating the corresponding null and alternative hypotheses and computing the p-value.

Problem 4. For the first-year students at a certain university, the correlation between SAT scores and first-year GPA was 0.75 . Assume the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT was 85%.

Problems 5. Let X_{1}, \ldots, X_{n} be a random sample from exponential distribution with mean θ. Construct the most powerful test of size α if the null hypothesis is $H_{0}: \theta=\theta_{0}$ and the alternative is $H_{1}: \theta=\theta_{1}>\theta_{0}$.

