Fall 2018, MATH 407, Mid-Term Exam 1

Wednesday, October 3, 2018

Instructor S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Name: _____

${\rm Circle\ the\ time\ of\ your\ discussion\ section:}\quad 2pm\quad 3pm$

Instructions:

- No books, notes, or calculators.
- Turn off cell phones.
- Show your work/explain your answers.
- You have 50 minutes to complete the exam.

Problem	Possible	Actual		
1	10			
2	10			
3	10			
4	10			
5	10			
Total	50			

Problem 1. Consider two events A and B such that P(A) = P(B) = 0.6. (a) Explain why the events cannot be mutually exclusive.

(b) Suppose that the events are independent. Compute $P(A \bigcup B)$.

Problem 2. Five balls are placed at random in five boxes. Compute the probability that there are no empty boxes.

Problem 3. A charitable lottery has 10,000 tickets, of which 200 win prizes and the rest win nothing. You buy 50 tickets.

(a) Compute, approximately, the number of the prize-winning tickets you expect to find.

(b) In the line below, circle the number you think is the closest to the probability that, out of 50 tickets, none are prize-winning, and explain your reasoning.

1	1	1	1	2	1	3	2	4
$\overline{100}$,	$\overline{10}$,	$\overline{5}$,	$\overline{3}$,	$\overline{5}$,	$\overline{2}$,	$\overline{5}$,	$\overline{3}$,	$\overline{5}$

Problem 4. Let C be a positive real number and consider the function

$$h(x) = \begin{cases} C(2x + x^2) & 0 < x < 1, \\ 0 & x < 0, \\ 3C & x > 1. \end{cases}$$

(a) Could h be a cumulative distribution function? If yes, explain why and determine C; if not, explain why.

(b) Could h be a probability density function? If yes, explain why and determine C; if not, explain why.

Problem 5. Let U be uniform on the interval (-1, 1). Compute the probability density function of $\ln(U+1)$.