Wednesday, February 22, 2017
Instructor S. Lototsky (KAP 248D; x0-2389; lototsky@math.usc.edu)

Name: \qquad

Circle the time of your discussion section: 10am 11am

Instructions:

- No books, notes, or calculators.
- You have 50 minutes to complete the exam.
- Show your work.

Problem	Possible	Actual
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Problem 1. Consider two events A and B such that $P(A)=P(B)=0.6$.
(a) Explain why the events cannot be mutually exclusive.
(b) Suppose that the events are independent. Compute $P\left(A \bigcup B^{c}\right)$. [B^{c} means the complement of B.]

Problem 2. Compute the proportion of all the four-children families with more girls than boys. Assume that boys and girls are equally likely. [In other words, you are dealing with $\mathcal{B}(4,1 / 2)$.]

Problem 3. A population contains twice as many females as males. In this population, 5% of males and 0.25% of females are color-blind. A color-blind person is selected at random. Compute the probability that the person is male.

Problem 4. Consider the function

$$
f(x)= \begin{cases}C\left(2-e^{-x}\right) & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Could f be a cumulative distribution function? If yes, explain why and determine C; if not, explain why.
(b) Could f be a probability density function? If yes, explain why and determine C; if not, explain why.

Problem 5. Let U be exponential random variable with parameter 1. Compute the probability density function of e^{U}.

