Fall 2013, MATH 407, Mid-Term Exam 2
Wednesday, November 20, 2013
Instructor S. Lototsky (KAP 248D; x0-2389; lototsky@math.usc.edu)

Name: \qquad

Circle the time of your discussion section: 8am 9am 10am

Instructions:

- No books, notes, or calculators.
- You have 50 minutes to complete the exam.
- Show your work.

Problem	Possible	Actual
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Problem 1. A fair die is rolled until the total sum of all rolls exceeds 300. Compute approximately the probability that at least 80 rolls are necessary. Note that, for a single roll of the die, the expected value and variance of the outcome are $7 / 2$ and $35 / 12$, respectively. Use the continuity correction. Leave the answer in the form $P(Z<r)$, where Z is a standard normal random variable and r is a suitable real number.

Problem 2. Customers arrive at a bank according to a Poisson process. Suppose that two customers arrives during the first hour. Compute the probability that at least one arrived during the first 20 minutes.

Problem 3. Let X, Y be independent random variables, both uniform on (0,1). Find the joint density of $X+Y$ and $X /(X+Y)$.

Problem 4. For a randomly selected group of 100 people, compute the expected number of distinct birthdays (that is, the expected number of the days of the year that are a birthday of at least one person in the group).

Problem 5. The joint probability density function of two random variables X and Y

$$
f_{X Y}(x, y)= \begin{cases}C y, & \text { if } x^{2}+y^{2} \leq 1,|x| \leq 1, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent? Justify your answer.
(b) Compute $E(X \mid Y)$. Suggestion: keep your computations to a minimum. In particular, there is no need to know C.

