A Summary of Local Time for Semimartingales. ${ }^{1}$

General Case

The setting: $X=X(t), t \geq 0$ is a real-valued semimartingale with canonical representation $X(t)=X(0)+M(t)+$ $A(t)$, where M is a (local) martingale and A is a process with bounded variation. We assume that the quadratic variation $\langle X\rangle=\langle X\rangle_{t}$ of the continuous martingale component of X is non-zero. There is the underlying stochastic basis $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ satisfying the usual conditions, and the usual assumption that the trajectories of X are càdlàg: for every $t>0, X(t)=X(t+)$ and $X(t-)$ exists; $\triangle X(t)=X(t)-X(t-)$.
A Motivation: If $f=f(x)$ is twice continuously differentiable, then the Itô formula holds for $f(X(t))$:

$$
f(X(t))=f(X(0))+\int_{0+}^{t} f^{\prime}(X(s-)) d X(s)+\frac{1}{2} \int_{0+}^{t} f^{\prime \prime}(X(s-)) d\langle X\rangle_{s}+\sum_{0<s \leq t}\left(f(X(s))-f(X(s-))-f^{\prime}(X(s-)) \Delta X(s)\right) .
$$

What if the function is not twice continuously differentiable, for example, $f(x)=|x|$?
The general idea: The local time is whatever makes the Itô formula work for $f(x)=|x-a|$ for every $a \in \mathbb{R}$.

Three equivalent definitions of the local time $L=L^{x}(t), x \in \mathbb{R}, t \geq 0$, under the additional assumption that X is continuous:

$$
\begin{align*}
& L^{x}(t)=\lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_{0}^{t} I(x \leq X(s)<x+\varepsilon) d\langle X\rangle_{s} \tag{1}\\
& \int_{0}^{t} f(X(s-)) d\langle X\rangle_{s}=\int_{\mathbb{R}} f(x) L^{x}(t) d x, f \text { bounded measurable: "occupation time" formula } \tag{2}\\
& L^{x}(t)=|X(t)-x|-|X(0)-x|-\int_{0}^{t} \operatorname{sgn}(X(s)-x) d X(s) \text { (Tanaka's formula.) } \tag{3}
\end{align*}
$$

The convention for the signum function at zero is $\operatorname{sgn}(0)=-1$.
Basic facts: If X is a continuous semi-martingale, then
(1) The local time exists and has a modification that is continuous in time and càdlàg in x, with jumps

$$
L^{x}(t)-L^{x-}(t)=2 \int_{0}^{t} I(X(s)=x) d A(s)
$$

where A is the bounded variation component of X [Kallenberg, Theorem 19.4];
(2) For each $x \in \mathbb{R}$, the function $t \mapsto L^{x}(t)$ is non-decreasing [by (1)];
(3) The Itô-Tanaka formula

$$
f(X(t))=f(X(0))+\int_{0}^{t} f_{-}^{\prime}(X(s)) d X(s)+\frac{1}{2} \int_{\mathbb{R}} L^{x}(t) f^{\prime \prime}(d x),
$$

holds for each of the following types of functions f :

- f is absolutely continuous and f^{\prime} has bounded variation;
- f is a difference of two convex functions;
f_{-}^{\prime} denotes the left-hand derivative of f, and, with f^{\prime} being of bounded variation, $f^{\prime \prime}(d x)$ denotes the measure corresponding to the derivative of f^{\prime}.

Beyond continuous semimartingales.

- For an arbitrary semimartingale $X, L^{x}(t)$ is defines by

$$
L^{x}(t)=|X(t)-x|-|X(0)-x|-\int_{0+}^{t} \operatorname{sgn}(X(s-)-x) d X(s)-\sum_{0<s \leq t}(|X(s)-x|-|X(s-)-x|-\operatorname{sgn}(X(s-)-x) \triangle X(s))
$$

which follows the idea of making the Itô formula work for the sgn function.

- for a continuous non-random function $X=X(t)$, local time can be defined using the usual occupation time/occupation measure formula

$$
\begin{equation*}
\int_{0}^{t} f(X(s)) d s=\int_{\mathbb{R}} f(x) T(t, d x) \tag{4}
\end{equation*}
$$

[^0]by setting $L^{x}(t)=T(t, d x) / d x$ if the density exists in some sense. With this definition, if $X(t)=a$ (constant), then $L^{x}(t)=t \delta(x-a)$, and if X is continuously differentiable with $X^{\prime}(t)>0$, then, after change of variables in (4),
$$
L^{x}(t)=\frac{I(X(0) \leq x \leq X(t))}{X^{\prime}\left(X^{-1}(x)\right)}
$$

- For a certain type of Markov processes, local time is defined as a particular additive functional; see Section 3.6 in M. B. Markus and J. Rosen, Markov processes, Gaussian processes, and local times [Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge, 2006].

For the standard Brownian motion, all the possible constructions of the local time coincide.

The Case of the Standard Brownian Motion

Because the standard Brownian motion $W=W(t), t \geq 0$, is a continuous square-integrable martingale with $\langle W\rangle_{t}=t$, the corresponding local time $L=L^{x}(t), t \geq 0, x \in \mathbb{R}$, is jointly continuous in (t, x). Moreover, (2) becomes a true occupation time formula:

$$
\int_{0}^{t} f(W(s)) d s=\int_{\mathbb{R}} f(x) L^{x}(t) d x
$$

which holds even for random t, and (3) implies $L^{0}(t)=|W(t)|-\tilde{W}(t)$, where, by the Lévy characterization of the Brownian motion, $\tilde{W}(t)=\int_{0}^{t} \operatorname{sgn}(W(s)) d W(s)$ is a standard Brownian motion.

The Brownian local time is closely connected with the Bessel processes, both usual and squared. A squared Bessel process of order $\delta \geq 0$ [or the square of a δ-dimensional Bessel process] starting at $x \geq 0$ is the (strong, nonnegative) solution of the equation

$$
d X(t)=\delta d t+2 \sqrt{X(t)} d W(t), t>0, \quad X(0)=x
$$

for $\delta=\mathrm{d}=1,2,3, \ldots$, the process describes the square of the Euclidean norm of the d-dimensional Brownian motion. Then the process $t \mapsto \sqrt{X(t)}$ is called the δ-dimensional Bessel process starting at \sqrt{x}.
Below are some remarkable facts related to the Brownian local time L :
1 [P. Lévy, 1948; Pitman, 1975] If $M(t)=\max _{0 \leq s \leq t} W(s)$, then the (two dimensional) processes $((M(t)-$ $W(t), M(t)), t \geq 0)$ and $\left(\left(|W(t)|, L^{0}(t)\right), t \geq 0\right)$ have the same distribution (in the space of continuous functions). In particular, $M-W$ is a Markov process. Moreover, if $\boldsymbol{\rho}=\boldsymbol{\rho}(t), t \geq 0$ is the threedimensional Bessel process starting at 0 [that is, $\boldsymbol{\rho}(t)=\sqrt{W_{1}^{2}(t)+W_{2}^{2}(t)+W_{3}^{2}(t)}$ for iid standard Brownian motions W_{j}] and $\boldsymbol{J}(t)=\inf _{s \geq t} \boldsymbol{\rho}(s)$, then the two-dimensional processes $((2 M(t)-W(t), M(t)), t \geq 0)$ and $((\boldsymbol{\rho}(t), \boldsymbol{J}(t)), t \geq 0)$ have the same distribution. In particular, $2 M-W$ is a Markov process.
2 [Engelbert-Schmidt 0-1 Law, 1981] If $f=f(x), x \in \mathbb{R}$, is a non-negative Borel-measurable function, then the following three statements are equivalent:

$$
\begin{gathered}
\mathbb{P}\left(\int_{0}^{t} f(W(s)) d s<\infty, 0<t<\infty\right)>0, \quad \mathbb{P}\left(\int_{0}^{t} f(W(s)) d s<\infty, 0<t<\infty\right)=1 \\
\int_{a}^{b} f(x) d x<\infty, \quad-\infty<a<b<+\infty
\end{gathered}
$$

3 [H.F. Trotter, 1958; E. Perkins, 1981] The function $(t, x) \mapsto L^{x}(t)$ is jointly Hölder $\frac{1}{2}-$.
4 [Ray-Knight Theorems, 1963] The goal is to fix the time variable t of $L=L^{x}(t)$ at a suitable stopping time and consider the result as a function of the space variable x. Accordingly, for $a>0$, consider the stopping times $\tau_{a}=\min \{t>0: W(t)=a\}, \sigma_{a}=\min \left\{t>0: L^{0}(t)=a\right\}$, and let $R(t)=\left(W_{1}(t), W_{2}(t)\right)$ be a two-dimensional standard Brownian motion independent of W. Then
(a) The processes $\left(L^{a-t}\left(\tau_{a}\right), t \in[0, a]\right)$ and $\left(|R(t)|^{2}, t \in[0, a]\right)$ have the same distribution;
(b) The processes $\left(L^{t}\left(\sigma_{a}\right)+W_{1}^{2}(t), t \geq 0\right)$ and $\left(\left(W_{1}(t)+\sqrt{a}\right)^{2}, t \geq 0\right)$ have the same distribution. In particular, $t \mapsto L^{t}\left(\sigma_{a}\right)$ is the squared Bessel process of order 0 starting at a.

[^0]: ${ }^{1}$ Sergey Lototsky, USC

