A Summary of Local Time for Semimartingales.¹

General Case

The setting: X = X(t), $t \ge 0$ is a real-valued semimartingale with canonical representation X(t) = X(0) + M(t) + A(t), where M is a (local) martingale and A is a process with bounded variation. We assume that the quadratic variation $\langle X \rangle = \langle X \rangle_t$ of the continuous martingale component of X is non-zero. There is the underlying stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\ge 0}, \mathbb{P})$ satisfying the usual conditions, and the usual assumption that the trajectories of X are càdlàg: for every t > 0, X(t) = X(t+) and X(t-) exists; $\Delta X(t) = X(t) - X(t-)$.

A Motivation: If f = f(x) is twice continuously differentiable, then the Itô formula holds for f(X(t)):

$$f(X(t)) = f(X(0)) + \int_{0+}^{t} f'(X(s-)) \, dX(s) + \frac{1}{2} \int_{0+}^{t} f''(X(s-)) \, d\langle X \rangle_s + \sum_{0 < s \le t} \left(f(X(s)) - f(X(s-)) - f'(X(s-)) \Delta X(s) \right).$$

What if the function is not twice continuously differentiable, for example, f(x) = |x|?

The general idea: The local time is whatever makes the Itô formula work for f(x) = |x - a| for every $a \in \mathbb{R}$.

Three equivalent definitions of the local time $L = L^x(t)$, $x \in \mathbb{R}$, $t \ge 0$, under the additional assumption that X is continuous:

$$L^{x}(t) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_{0}^{t} I\left(x \le X(s) < x + \varepsilon\right) d\langle X \rangle_{s};$$

$$\tag{1}$$

$$\int_{0}^{t} f(X(s-)) d\langle X \rangle_{s} = \int_{\mathbb{R}} f(x) L^{x}(t) dx, \ f \text{ bounded measurable: "occupation time" formula}$$
(2)

$$L^{x}(t) = |X(t) - x| - |X(0) - x| - \int_{0}^{t} \operatorname{sgn}(X(s) - x) \, dX(s) \text{ (Tanaka's formula.)}$$
(3)

The convention for the signum function at zero is sgn(0) = -1.

Basic facts: If X is a continuous semi-martingale, then

(1) The local time exists and has a modification that is continuous in time and $c\dot{a}dl\dot{a}g$ in x, with jumps

$$L^{x}(t) - L^{x-}(t) = 2 \int_{0}^{t} I(X(s) = x) \, dA(s).$$

where A is the bounded variation component of X [Kallenberg, Theorem 19.4];

- (2) For each $x \in \mathbb{R}$, the function $t \mapsto L^x(t)$ is non-decreasing [by (1)];
- (3) The Itô-Tanaka formula

$$f(X(t)) = f(X(0)) + \int_0^t f'_-(X(s)) \, dX(s) + \frac{1}{2} \int_{\mathbb{R}} L^x(t) \, f''(dx),$$

holds for each of the following types of functions f:

- f is absolutely continuous and f' has bounded variation;
- *f* is a difference of two convex functions;

 f'_{-} denotes the left-hand derivative of f, and, with f' being of bounded variation, f''(dx) denotes the measure corresponding to the derivative of f'.

Beyond continuous semimartingales.

• For an arbitrary semimartingale $X, L^{x}(t)$ is defines by

$$L^{x}(t) = |X(t) - x| - |X(0) - x| - \int_{0+}^{t} \operatorname{sgn}(X(s) - x) \, dX(s) - \sum_{0 < s \le t} \left(|X(s) - x| - |X(s) - x| - \operatorname{sgn}(X(s) - x) \Delta X(s) \right),$$

which follows the idea of making the Itô formula work for the sgn function.

• for a continuous non-random function X = X(t), local time can be defined using the usual occupation time/occupation measure formula

$$\int_0^t f(X(s)) \, ds = \int_{\mathbb{R}} f(x) T(t, dx),\tag{4}$$

¹Sergey Lototsky, USC

by setting $L^x(t) = T(t, dx)/dx$ if the density exists in some sense. With this definition, if X(t) = a (constant), then $L^x(t) = t\delta(x-a)$, and if X is continuously differentiable with X'(t) > 0, then, after change of variables in (4),

$$L^{x}(t) = \frac{I(X(0) \le x \le X(t))}{X'(X^{-1}(x))}.$$

• For a certain type of Markov processes, local time is defined as a particular *additive functional*; see Section 3.6 in M. B. Markus and J. Rosen, Markov processes, Gaussian processes, and local times [Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge, 2006].

For the standard Brownian motion, all the possible constructions of the local time coincide.

The Case of the Standard Brownian Motion

Because the standard Brownian motion W = W(t), $t \ge 0$, is a continuous square-integrable martingale with $\langle W \rangle_t = t$, the corresponding local time $L = L^x(t)$, $t \ge 0, x \in \mathbb{R}$, is jointly continuous in (t, x). Moreover, (2) becomes a true occupation time formula:

$$\int_0^t f(W(s)) \, ds = \int_{\mathbb{R}} f(x) L^x(t) \, dx,$$

which holds even for random t, and (3) implies $L^0(t) = |W(t)| - \tilde{W}(t)$, where, by the Lévy characterization of the Brownian motion, $\tilde{W}(t) = \int_0^t \operatorname{sgn}(W(s)) dW(s)$ is a standard Brownian motion.

The Brownian local time is closely connected with the *Bessel processes*, both usual and squared. A squared Bessel process of order $\delta \ge 0$ [or the square of a δ -dimensional Bessel process] starting at $x \ge 0$ is the (strong, non-negative) solution of the equation

$$dX(t) = \delta dt + 2\sqrt{X(t)} dW(t), \ t > 0, \ X(0) = x;$$

for $\delta = d = 1, 2, 3, \ldots$, the process describes the *square* of the Euclidean norm of the d-dimensional Brownian motion. Then the process $t \mapsto \sqrt{X(t)}$ is called the δ -dimensional Bessel process starting at \sqrt{x} .

Below are some remarkable facts related to the Brownian local time L:

1 [P. Lévy, 1948; Pitman, 1975] If $M(t) = \max_{0 \le s \le t} W(s)$, then the (two dimensional) processes $\left(\left(M(t) - W(s) - W(s) \right) + V(s) \right)$

 $W(t), M(t)), t \ge 0$ and $((|W(t)|, L^0(t)), t \ge 0)$ have the same distribution (in the space of continuous functions). In particular, M - W is a Markov process. Moreover, if $\boldsymbol{\rho} = \boldsymbol{\rho}(t), t \ge 0$ is the threedimensional Bessel process starting at 0 [that is, $\boldsymbol{\rho}(t) = \sqrt{W_1^2(t) + W_2^2(t) + W_3^2(t)}$ for iid standard Brownian motions W_j] and $\boldsymbol{J}(t) = \inf_{s \ge t} \boldsymbol{\rho}(s)$, then the two-dimensional processes $((2M(t) - W(t), M(t)), t \ge 0)$ and

 $((\boldsymbol{\rho}(t), \boldsymbol{J}(t)), t \geq 0)$ have the same distribution. In particular, 2M - W is a Markov process.

2 [Engelbert-Schmidt 0-1 Law, 1981] If f = f(x), $x \in \mathbb{R}$, is a non-negative Borel-measurable function, then the following three statements are equivalent:

$$\mathbb{P}\left(\int_{0}^{t} f\left(W(s)\right) ds < \infty, \ 0 < t < \infty\right) > 0, \quad \mathbb{P}\left(\int_{0}^{t} f\left(W(s)\right) ds < \infty, \ 0 < t < \infty\right) = 1,$$
$$\int_{a}^{b} f(x) dx < \infty, \quad -\infty < a < b < +\infty.$$

- 3 [H.F. Trotter, 1958; E. Perkins, 1981] The function $(t, x) \mapsto L^{x}(t)$ is jointly Hölder $\frac{1}{2}$ -.
- 4 [Ray-Knight Theorems, 1963] The goal is to fix the time variable t of $L = L^x(t)$ at a suitable stopping time and consider the result as a function of the space variable x. Accordingly, for a > 0, consider the stopping times $\tau_a = \min\{t > 0 : W(t) = a\}$, $\sigma_a = \min\{t > 0 : L^0(t) = a\}$, and let $R(t) = (W_1(t), W_2(t))$ be a two-dimensional standard Brownian motion independent of W. Then
 - (a) The processes $(L^{a-t}(\tau_a), t \in [0, a])$ and $(|R(t)|^2, t \in [0, a])$ have the same distribution;
 - (b) The processes $(L^t(\sigma_a) + W_1^2(t), t \ge 0)$ and $((W_1(t) + \sqrt{a})^2, t \ge 0)$ have the same distribution. In particular, $t \mapsto L^t(\sigma_a)$ is the squared Bessel process of order 0 starting at a.