
A Summary of Local Time for Semimartingales.1

General Case

The setting: X = X(t), t ≥ 0 is a real-valued semimartingale with canonical representation X(t) = X(0)+M(t)+
A(t), where M is a (local) martingale and A is a process with bounded variation. We assume that the quadratic
variation 〈X〉 = 〈X〉t of the continuous martingale component of X is non-zero. There is the underlying stochastic
basis (Ω,F , (Ft)t≥0,P) satisfying the usual conditions, and the usual assumption that the trajectories ofX are càdlàg:
for every t > 0, X(t) = X(t+) and X(t-) exists; 4X(t) = X(t)−X(t-).

A Motivation: If f = f(x) is twice continuously differentiable, then the Itô formula holds for f
(
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)
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What if the function is not twice continuously differentiable, for example, f(x) = |x|?

The general idea: The local time is whatever makes the Itô formula work for f(x) = |x− a| for every a ∈ R.

Three equivalent definitions of the local time L = Lx(t), x ∈ R, t ≥ 0, under the additional assumption that
X is continuous:

Lx(t) = lim
ε↓0

1

ε

∫ t

0

I
(
x ≤ X(s) < x+ ε

)
d〈X〉s; (1)∫ t

0

f
(
X(s-)

)
d〈X〉s =

∫
R
f(x)Lx(t) dx, f bounded measurable: “occupation time” formula (2)

Lx(t) = |X(t)− x| − |X(0)− x| −
∫ t

0

sgn
(
X(s)− x

)
dX(s) (Tanaka′s formula.) (3)

The convention for the signum function at zero is sgn(0) = −1.

Basic facts: If X is a continuous semi-martingale, then

(1) The local time exists and has a modification that is continuous in time and càdlàg in x, with jumps

Lx(t)− Lx−(t) = 2

∫ t

0

I
(
X(s) = x

)
dA(s),

where A is the bounded variation component of X [Kallenberg, Theorem 19.4];
(2) For each x ∈ R, the function t 7→ Lx(t) is non-decreasing [by (1)];
(3) The Itô-Tanaka formula

f
(
X(t)

)
= f

(
X(0)

)
+

∫ t

0

f ′
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dX(s) +
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2

∫
R
Lx(t) f ′′(dx),

holds for each of the following types of functions f :
• f is absolutely continuous and f ′ has bounded variation;
• f is a difference of two convex functions;

f ′
− denotes the left-hand derivative of f , and, with f ′ being of bounded variation, f ′′(dx) denotes the measure
corresponding to the derivative of f ′.

Beyond continuous semimartingales.

• For an arbitrary semimartingale X, Lx(t) is defines by

Lx(t) =
∣∣X(t)− x

∣∣− ∣∣X(0)− x
∣∣− ∫ t

0+

sgn
(
X(s-)− x

)
dX(s)−

∑
0<s≤t

(∣∣X(s)− x
∣∣− ∣∣X(s-)− x

∣∣− sgn
(
X(s-)− x

)
△X(s)

)
,

which follows the idea of making the Itô formula work for the sgn function.
• for a continuous non-random function X = X(t), local time can be defined using the usual occupation
time/occupation measure formula∫ t

0

f
(
X(s)

)
ds =

∫
R
f(x)T (t, dx), (4)
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by setting Lx(t) = T (t, dx)/dx if the density exists in some sense. With this definition, if X(t) = a (constant),
then Lx(t) = tδ(x− a), and if X is continuously differentiable with X ′(t) > 0, then, after change of variables
in (4),

Lx(t) =
I
(
X(0) ≤ x ≤ X(t)

)
X ′

(
X−1(x)

) .

• For a certain type of Markov processes, local time is defined as a particular additive functional; see Section
3.6 in M. B. Markus and J. Rosen, Markov processes, Gaussian processes, and local times [Cambridge Studies
in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge, 2006].

For the standard Brownian motion, all the possible constructions of the local time coincide.

The Case of the Standard Brownian Motion

Because the standard Brownian motionW = W (t), t ≥ 0, is a continuous square-integrable martingale with 〈W 〉t = t,
the corresponding local time L = Lx(t), t ≥ 0, x ∈ R, is jointly continuous in (t, x). Moreover, (2) becomes a true
occupation time formula: ∫ t

0

f
(
W (s)

)
ds =

∫
R
f(x)Lx(t) dx,

which holds even for random t, and (3) implies L0(t) = |W (t)| − W̃ (t), where, by the Lévy characterization of the

Brownian motion, W̃ (t) =
∫ t

0
sgn

(
W (s)

)
dW (s) is a standard Brownian motion.

The Brownian local time is closely connected with the Bessel processes, both usual and squared. A squared Bessel

process of order δ ≥ 0 [or the square of a δ-dimensional Bessel process] starting at x ≥ 0 is the (strong, non-
negative) solution of the equation

dX(t) = δ dt+ 2
√
X(t) dW (t), t > 0, X(0) = x;

for δ = d = 1, 2, 3, . . ., the process describes the square of the Euclidean norm of the d-dimensional Brownian motion.
Then the process t 7→

√
X(t) is called the δ-dimensional Bessel process starting at

√
x.

Below are some remarkable facts related to the Brownian local time L:

1 [P. Lévy, 1948; Pitman, 1975] If M(t) = max
0≤s≤t

W (s), then the (two dimensional) processes
((

M(t) −

W (t), M(t)
)
, t ≥ 0

)
and

((
|W (t)|, L0(t)

)
, t ≥ 0

)
have the same distribution (in the space of contin-

uous functions). In particular, M − W is a Markov process. Moreover, if ρ = ρ(t), t ≥ 0 is the three-

dimensional Bessel process starting at 0 [that is, ρ(t) =
√

W 2
1 (t) +W 2

2 (t) +W 2
3 (t) for iid standard Brownian

motions Wj ] and J(t) = inf
s≥t

ρ(s), then the two-dimensional processes
((

2M(t) −W (t), M(t)
)
, t ≥ 0

)
and((

ρ(t), J(t)
)
, t ≥ 0

)
have the same distribution. In particular, 2M −W is a Markov process.

2 [Engelbert-Schmidt 0 -1 Law, 1981] If f = f(x), x ∈ R, is a non-negative Borel-measurable function, then
the following three statements are equivalent:

P
(∫ t

0

f
(
W (s)

)
ds < ∞, 0 < t < ∞

)
> 0, P

(∫ t

0

f
(
W (s)

)
ds < ∞, 0 < t < ∞

)
= 1,∫ b

a

f(x) dx < ∞, −∞ < a < b < +∞.

3 [H.F. Trotter, 1958; E. Perkins, 1981] The function (t, x) 7→ Lx(t) is jointly Hölder 1
2 -.

4 [Ray-Knight Theorems, 1963] The goal is to fix the time variable t of L = Lx(t) at a suitable stopping time
and consider the result as a function of the space variable x. Accordingly, for a > 0, consider the stopping
times τa = min{t > 0 : W (t) = a}, σa = min{t > 0 : L0(t) = a}, and let R(t) =

(
W1(t),W2(t)

)
be a

two-dimensional standard Brownian motion independent of W . Then
(a) The processes

(
La−t(τa), t ∈ [0, a]

)
and

(
|R(t)|2, t ∈ [0, a]

)
have the same distribution;

(b) The processes
(
Lt(σa) + W 2

1 (t), t ≥ 0
)
and

((
W1(t) +

√
a
)2
, t ≥ 0

)
have the same distribution. In

particular, t 7→ Lt(σa) is the squared Bessel process of order 0 starting at a.


