A Summary of Local Time for Semimartingales.

General Case

The setting: X = X (¢), ¢t > 0 is a real-valued semimartingale with canonical representation X (¢t) = X (0) + M (t) +
A(t), where M is a (local) martingale and A is a process with bounded variation. We assume that the quadratic
variation (X) = (X)¢ of the continuous martingale component of X is non-zero. There is the underlying stochastic
basis (2, F, (Ft)¢>0, P) satisfying the usual conditions, and the usual assumption that the trajectories of X are cadlag:
for every t > 0, X (t) = X(t+) and X (¢-) exists; AX(t) = X (¢t) — X(¢-).

A Motivation: If f = f(x) is twice continuously differentiable, then the It formula holds for f(X(t)):

FOx) = sexo) + [ 7 e axe + [ ) A+ 3 (FXE) = F(X() — 8 (X)) AX ().

0+ 0<s<t

What if the function is not twice continuously differentiable, for example, f(x) = |z|?

The general idea: The local time is whatever makes the It6 formula work for f(z) = |« — a| for every a € R.

Three equivalent definitions of the local time L = L*(t), z € R, t > 0, under the additional assumption that

X is continuous:
t

Lm(t):liﬂ}é Iz < X(s) <z+e)d(X)s; (1)
€ 0
t
/ f(X(s) d(X)s = / f(z)L*(t) dz, f bounded measurable: “occupation time” formula (2)
0 R
t
L*(t) = |X(t) —z| — | X(0) — x| — / sgn(X(s) — z) dX(s) (Tanaka's formula.) (3)
0
THE CONVENTION FOR THE SIGNUM FUNCTION AT ZERO 1S sgn(0) = —1.

Basic facts: If X is a continuous semi-martingale, then

(1) The local time exists and has a modification that is continuous in time and cddlag in z, with jumps

Lo(t) - L (t) = 2/0 I(X(s) = z) dA(s),

where A is the bounded variation component of X [Kallenberg, Theorem 19.4];
(2) For each z € R, the function ¢ — L*(¢) is non-decreasing [by (1)];
(3) The Ité-Tanaka formula

FOXW) = 1K) + [ (X)) ax(s)+ 5 [ 220 7o),

holds for each of the following types of functions f:

e f is absolutely continuous and f’ has bounded variation;

e f is a difference of two convex functions;
f denotes the left-hand derivative of f, and, with f’ being of bounded variation, f”(dz) denotes the measure
corresponding to the derivative of f’.

Beyond continuous semimartingales.

e For an arbitrary semimartingale X, L*(¢) is defines by

L(t) = |X(t) - x’ - |X(0) — x’ - /0+ sgn (X (s-) —z) dX(s) — Z (|X(s) — x| - ’X(s—) — x‘ —sgn(X(s-) — x)AX(s)),

0<s<t

which follows the idea of making the Itd formula work for the sgn function.
e for a continuous non-random function X = X(t), local time can be defined using the wusual occupation
time/occupation measure formula

/fm@»m:/juﬁwmx (4)
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by setting L*(t) = T'(¢, dx)/dx if the density exists in some sense. With this definition, if X (¢) = a (constant),
then L*(t) = t6(x —a), and if X is continuously differentiable with X’(¢) > 0, then, after change of variables
in (4),
I(X(0) <z < X(1))
X'(X—1(2))
e For a certain type of Markov processes, local time is defined as a particular additive functional; see Section
3.6 in M. B. Markus and J. Rosen, Markov processes, Gaussian processes, and local times [Cambridge Studies
in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge, 2006].

L*(t) =

For the standard Brownian motion, all the possible constructions of the local time coincide.
The Case of the Standard Brownian Motion

Because the standard Brownian motion W = W (t), t > 0, is a continuous square-integrable martingale with (W), = ¢,
the corresponding local time L = L*(t), t > 0,2 € R, is jointly continuous in (¢,z). Moreover, (2) becomes a true
occupation time formula:

¢
| rwe)as= [ s a.
0
which holds even for random ¢, and (3) implies L°(t) = |W (t)| — W (t), where, by the Lévy characterization of the
Brownian motion, W (t) = [ sgn(W(s)) dW(s) is a standard Brownian motion.

The Brownian local time is closely connected with the Bessel processes, both usual and squared. A squared Bessel
process of order 6 > 0 [or the square of a d-dimensional Bessel process| starting at = > 0 is the (strong, non-
negative) solution of the equation

dX(t) = §dt +2¢/X (&) dW(t), t >0, X(0) =z

for6 =d=1,2,3,..., the process describes the square of the Euclidean norm of the d-dimensional Brownian motion.
Then the process t — /X (t) is called the /-dimensional Bessel process starting at /z.

Below are some remarkable facts related to the Brownian local time L:
1 [P. Lévy, 1948; Pitman, 1975] If M(t) = OrgaictW(s), then the (two dimensional) processes ((M(t) -

W(t), M(t), t > 0) and ((|W(t)\, Lo(t)), t > 0) have the same distribution (in the space of contin-
uous functions). In particular, M — W is a Markov process. Moreover, if p = p(t), t > 0 is the three-
dimensional Bessel process starting at 0 [that is, p(t) = \/WZ(t) + WZ(t) + W2(t) for iid standard Brownian

motions W;] and J(t) = 1I;£ p(s), then the two-dimensional processes ((QM(t) —W(t), M(t)), t > 0) and

((p(t), J(@), t > 0) have the same distribution. In particular, 2M — W is a Markov process.

2 [Engelbert-Schmidt 0-1 Law, 1981] If f = f(x), € R, is a non-negative Borel-measurable function, then
the following three statements are equivalent:

IP’(/Otf(W(s))ds<oo, 0<t<oo)>0, P(/Otf(W(s))ds<oo, 0<t<oo>:1,

b
/f(:c)dx<oo, —oo<a<b< 4oo.

3 [H.F. Trotter, 1958; E. Perkins, 1981] The function (¢, x) — L*(t) is jointly Holder § -.

4 [Ray-Knight Theorems, 1963] The goal is to fix the time variable ¢ of L = L*(t) at a suitable stopping time
and consider the result as a function of the space variable z. Accordingly, for a > 0, consider the stopping
times 7, = min{t > 0 : W(t) = a}, 0, = min{t > 0 : L°(t) = a}, and let R(t) = (Wy(t), Wa(t)) be a
two-dimensional standard Brownian motion independent of W. Then

(a) The processes (L*~'(7,), t € [0,a]) and (|R(t)|?, t € [0,a]) have the same distribution;
(b) The processes (Lf(c,) + WE(t), t > 0) and ((Wl(t) + \/5)2, t > 0) have the same distribution. In

particular, t — L'(0,) is the squared Bessel process of order 0 starting at a.



