
Some definitions and results from linear algebra

A matrix m-by-n is a table of numbers, having m rows and n columns. It is a representation of a
linear mapping from Rn to Rm when the standard unit bases are used in Rn and Rm. [Note: m-by-n
matrix maps Rn to Rm]. The element, or entry, aij of a matrix A is the number in row i and column
j, counting from top-left. Sometimes, especially for particular values of i and j, we write ai,j instead of
aij . For example, a2,1 is the same as a21.

A transpose AT of a matrix A = (aij) is the matrix AT = (aji).

A vector is a matrix with only one column; the size of the vector is the number of rows.

The product of an m-by-n matrix A = (aij) with an n-by-k matrix B = (bj`) is an m-by-k matrix
C = AB with the element in the row i and column ` equal to

ci` =
n∑

j=1

aijbj`

(Einstein’s) summation convention: sum over the repeated indices without writing the summation sign,
e.g. the above becomes ci` = aijbj`.

A square matrix has equal number or rows and columns.
The diagonal elements of a square matrix A = (aij) are aii. The element aij is said to be above

the diagonal if i < j (e.g. a1,2) and below the diagonal if i > j (e.g. a2,1).
The trace of a square matrix is the sum of the diagonal elements:

Tr(A) = a11 + a22 + · · · .

The determinant of a square n-by-n matrix A = (aij) is the number

det(A) = |A| =
∑

σ

(−1)|σ|a1,σ(1)a2,σ(2) · · · an,σ(n)

where summation is carried out over all n! permutations of the set (1, 2, . . . , n), and |σ| is the number
of times a bigger number comes in front of the smaller number in the sequence (σ(1), σ(2), . . . , σ(n)).

The identity matrix I is a square matrix with all diagonal elements equal to 1 and all other
elements equal to zero. Writing In signifies that I has n rows and n columns.

A symmetric matrix A = (aij) is a square matrix with aij = aji.
A skew-symmetric matrix A = (aij) is a square matrix with aij = −aji. In particular, the

diagonal elements of a skew-symmetric matrix are equal to zero.
A singular matrix is a square matrix with zero determinant.
A diagonal matrix is a square matrix whose non-zero elements are only on the diagonal: aij = 0

if i 6= j.
An upper triangular matrix has aij = 0 for i > j (zeroes below the diagonal).
A lower triangular matrix has aij = 0 for i < j (zeroes above the diagonal).

Elementary row operations on the matrix with rows r1, . . . , rn are
(1) exchanging the rows: ri ↔ rj ;
(2) multiplying a row by a non-zero number c: ri ← cri;
(3) adding to a row a multiple of another row: ri ← ri + crj .

Gaussian elimination is a special procedure for solving a linear system of equations using elementary
row operations.

Linear (or vector) space V over the real or complex numbers is a collection of objects that can be
added and multiplied by a number so that all the “obvious” properties hold (but must be explicitly
required): for u, v, w ∈ V and numbers a, b,

(1) commutativity of vector addition: u + v = v + u;
(2) associativity of vector addition: (u + v) + w = u + (v + w);
(3) existence of zero vector θ ∈ V such that u + θ = u for all u ∈ V ;
(4) existence of the additive inverse: for every u ∈ V , there is a (unique) −u ∈ V such that

u + (−u) = θ;
(5) distributivity laws: a(u + v) = au + av, (a + b)u = au + bu, (ab)u = a(bu);
(6) one more: 1u = u.

An immediate exercise after this definition is to prove some other “obvious” properties, such as 0u = θ
and (−1)u = −u. Eventually, one stops writing θ for the zero vector and goes back to writing 0 for any
kind of zero.
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Main examples of vector spaces are (a) Rmn: matrices of the given size (m rows, n columns), of
which the (proper) vectors Rm are a particular case, and (b) Cn([a, b]): continuous functions defined
on a given interval [a, b] and having n ≥ 0 continuous derivatives.

A linear combination of elements u1, . . . , un of a vector space is an element of the form a1u1 +
. . . + anun, where a1, . . . , an are some numbers.

A linear span of elements u1, . . . , un of a vector space is the collection of all possible linear combi-
nations of these elements, that is, the collection of a1u1 + . . . anun, for all possible values of the numbers
a1, . . . , an.

The elements u1, . . . , un of a vector space are called linearly dependent if it is possible to get
a1u1 + . . .+abun = θ with not all numbers ak equal to zero. Otherwise, the elements are called linearly
independent.

The dimension of a vector space is the largest number of linearly independent elements in that
space. In particular, the space Rn is exactly n-dimensional. As a result, any four vectors in R3 are
linearly dependent.

The rank Rank(A) of a matrix A is the maximal number of linearly independent rows (or columns).
The rank of a rectangular m-by-n matrix cannot exceed the smaller of the two numbers n and m, and
is the dimension of the image of Rn under the linear mapping from Rn to Rm defined by A.

A non-singular square matrix of size n has full rank n. If u and v are two non-zero column vectors
of size n, then the n-by-n matrix uvT always has rank equal to 1.

The Null space or Kernel of an m-by-n matrix A is the collection of vectors v such that Av = θ,
the zero vector. The null space is a linear space (in fact, a linear sub-space of Rn); the dimension of
this space is denoted by Nulllity(A).

The Rank-Nullity Theorem: Rank(A) + Nulllity(A) = n for every m-by-n matrix A.
[Note that the result is true regardless of m (the number of rows of A) and involves only n (the number
of columns)].

The characteristic polynomial PA(λ) of an n-by-n square matrix A is

PA(λ) = det(A− λI),

where I is the identity matrix of the same size as A. The degree of this polynomial is n. For every
matrix A, PA(A) = 0, the zero matrix [the Cayley-Hamilton Theorem].

An eigenvalue of the matrix A is a root of the characteristic polynomial of A. Complex eigenvalues
are allowed, and, by the fundamental theorem of algebra, we have

PA(λ) = (λ− λ1)n1(λ− λ2)n2 · · · (λ− λk)nk ,

where λ1, . . . , λk are the distinct eigenvalues of A. The corresponding number ni is called the algebraic
multiplicity of the eigenvalue λi. Note that n1 + n2 + . . . + nk = n.

The sum of all eigenvalues, counting multiplicity, is equal to the trace of the matrix. The product of
all eigenvalues, counting multiplicity, is equal to the determinant of the matrix. In particular, a matrix
is singular if and only if it has a zero eigenvalue.

The eigenvector vi of the matrix A, corresponding to the eigenvalue λi, is a non-zero solution of
the equation

(A− λi)vi = θ (θ is the zero vector),
or, equivalently,

Avi = λivi.

The geometric multiplicity of the eigenvalue λi is the number of linearly independent eigenvectors
corresponding to it. The geometric multiplicity is not bigger than the algebraic multiplicity. If the geo-
metric multiplicity is strictly less than the algebraic multiplicity, then the eigenvalue is called defective.
A matrix is called defective if it has at least one defective eigenvalue.

A generalized eigenvector u of the matrix A, corresponding to the eigenvalue λ with algebraic
multiplicity m > 1, is a non-zero solution of the equation

(A− λI)mu = θ.

Theorem. If λ is an eigenvalue of the n-by-n matrix A and has algebraic multiplicity m, then the
rank of the matrix (A− λI)m is n−m and the equation

(A− λI)mv = θ.

has exactly m linearly independent solutions u1, . . . , um.


