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1 Matrix Basics
Literature to this topic: [1–4].
x†y ⇐⇒< y,x >: standard inner product.
x†x = 1 : x is normalized
x†y = 0 : x,y are orthogonal
x†y = 0, x†x = 1, y†y = 1 : x,y are orthonormal
Ax = y is uniquely solvable if A is linear independent (nonsingular).
Majorization: Arrange b and a in increasing order (bm,am) then:

b majorizes a ⇐⇒
k

∑
i=1

bmi ≥
k

∑
i=1

ami ∀ k ∈ [1, . . . ,n] (1)

The collection of all vectors b ∈ Rn that majorize a given vector a ∈ Rn may be obtained by forming the convex hull of n!
vectors, which are computed by permuting the n components of a.
Direct sum of matrices A ∈Mn1,B ∈Mn2:

A⊕B =
[

A 0
0 B

]
∈Mn1+n2 (2)

[A,B] = traceAB†: matrix inner product.

1.1 Trace

traceA =
n

∑
i

λi (3)

trace(A+B) = traceA+ traceB (4)
traceAB = traceBA (5)

1.2 Determinants
The determinant det(A) expresses the volume of a matrix A.

det(A) = 0 ⇐⇒


A is singular.
Linear equation is not solvable.

A−1 does not exists
vectors in A are linear dependent

(6)

det(A) 6= 0 ⇐⇒ A is regular/nonsingular.

Ai j ∈ R→ det(A) ∈ R Ai j ∈ C→ det(A) ∈ C

If A is a square matrix(An×n) and has the eigenvalues λi, then det(A) = ∏λi

detAT = detA (7)
detA† = detA (8)
detAB = detA detB (9)

Elementary operations on matrix and determinant:

Interchange of two rows : detA ∗= −1
Multiplication of a row by a nonzero scalar c : detA ∗= c
Addition of a scalar multiple of one row to another row : detA = detA

1



2 EIGENVALUES, EIGENVECTORS, AND SIMILARITY 2

∣∣∣∣a b
c d

∣∣∣∣ = ad−bc (10)

2 Eigenvalues, Eigenvectors, and Similarity
σ(An×n) = {λ1, . . . ,λn} is the set of eigenvalues of A, also called the spectrum of A.
ρ(A) = max{|λi|} is the spectral radius of matrix A.
Λ = Dn×n = diag{λ1, . . . ,λn} is the diagonal matrix of eigenvalues.
V = {v1, . . . ,vn} is the matrix of eigenvectors.

2.1 Characteristic Polynomial

pA(t) = det(tI−A) (11)

pA(t) =
m

∏
i=1

(t−λi)si , 1≤ si ≤ n,
m

∑
i

si = n, λi ∈ σ(A) (12)

2.2 Eigendecomposition
Mv = λv (13)

If M = 1
N [Re(x), Im(x)]T [Re(x), Im(x)], then λ is the variance of M along v. sdev(M) along v is then =

√
λ.

Characteristic function: |λI−M|= 0

trace M = ∑λi (14)

detM = |M|= ∏λi (15)
σ(AB) = σ(BA) even if AB 6= BA (16)

M = MT∗ → λ ∈ R (17)
Mk → λ

k (18)

M is squared matrix. With D = diag λi and V = [v0,v1, . . .]:

MV = DV ⇐⇒ M = VDV−1 (19)

M2 = (VDV−1)(VDV−1) = VD2V−1 (20)
Mn = VDnV−1 with n ∈ N>0 (21)

M−1 = VD−1V−1 with D−1 = diag λ
−1
i (22)

eM = VeDV−1 with eD = diag eλi (23)

M1/2 = VD1/2V−1 with D1/2 = diag λ
1/2
i (24)

(24) is also known as square root of the matrix M with M = M1/2M1/2†.
A triangular→ σ(A) = {aii|1≤ i≤ n}

2.3 Similarity
A is similar to B if ∃ S such that:

B = S−1AS → A∼ B ⇐⇒ B∼ A (25)

A∼ B→


σ(A) = σ(B)
detA = detB

traceA = traceB
rankA = rankB
pA(t) = pB(t) pA(t): characteristic polynomial of A

(26)

∀ A ∈Mn A∼ AT !! → rankA = rankAT (row rank = column rank).
∀ A ∈Mn A∼ S S = ST := S is a symmetric matrix
A is diagonalizable ⇐⇒ ∃D : A∼ D
A∼ D ⇐⇒ A has n linearly independent eigenvectors V = {v1, . . . ,vn}:

A∼ D ⇐⇒ D = S−1AS with S = Va, D = Λa (27)

A,B (A 6∼ B) are simultaneously diagonalizable, if:

∃ S : Da = S−1AS, Db = S−1BS (28)

A,B commute ⇐⇒ A,B are simultaneously diagonalizable
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Commuting family W ⊆Mn: each pair of matrices in W is commutative under multiplication ⇐⇒ W is a simultaneously
diagonalizable family.
If W is a commuting family, then there is a vector x that is an eigenvector of every A ∈W .

2.4 Eigenvectors, Eigenspace
Eigenspace is the the set of eigenvectors corresponding to the eigenvalue (one or more) of A.
Geometric multiplicity of λ is the dimension of the eigenspace of A corresponding to the eigenvalue λ. It is the maximum
number of linearly independent eigenvectors associated with an eigenvalue.
Algebraic multiplicity of λ is the multiplicity of the eigenvalue λ as a zero in the characteristic polynom. It is the amount of
same values of λ in σ(A). In general, the term multiplicity usually references the algebraic multiplicity.
Geometric multiplicity of λ ≤ algebraic multiplicity of λ.

∃ λ ∈ σ(A): geometric mult. < algebraic mult. → A is de f ective. (29)
∀ λ ∈ σ(A): geometric mult. = algebraic mult. → A is nonde f ective. (30)

∀ λ ∈ σ(A): geometric mult. of λ = 1 → A is nonderogatory. (31)

If rank(A) = k then ∃xi,yi : A = x1y†
1 + . . .+xky†

k

3 Unitary Equivalence, Normal and Unitary Matrices (real orthogonal matrices
in Rn)

U is unitary ⇐⇒


⇐⇒ UU† = I
⇐⇒ U† is unitary
⇐⇒ U is nonsingular and U−1 = U†

⇐⇒ U columns/rows form an orthonormal set
⇐⇒ Ux = y→ y†y = x†x ⇐⇒ |y|= |x|∀x ∈ Cn

(32)

U,V are unitary → UV is also unitary.
A is unitary equivalent to B if ∃ U(unitary matrix) such that:

B = U†AU (33)

Unitary equivalence implies similarity, but not conversely. It corresponds, like similarity, to a change of basis, but of a special
type – a change from one orthonormal basis to another. An orthonormal change of basis leaves unchanged the sum of squares
of the absolute values of the entries (traceA†A = traceB†B if A is unitary equivalent to B).
Schur’s theorem: Every matrix A is unitary equivalent to a upper(lower) triangular matrix T:

∀A ∃U,T : U†AU = T (34)

Where U is unitary, T is triangular. U, T are not unique.

3.1 Normal matrices
Normal matrices generalize the unitary, real summetric, Hermitian, and skew– Hermitian matrices(and other). The class of
normal matrices is closed under unitary equivalence. Condition:

A†A = AA† (35)

{Unitary, Hermitian, Skew–Hermitian} ⊆ Normal (36)

A normal ⇐⇒



A is normal
⇐⇒ A is unitarily diagonalizable

⇐⇒
n
∑
i, j
|ai j|2 =

n
∑
i
|λi|2

⇐⇒ ∃ orthonormal set of n eigenvectors of A
⇐⇒ ∃ U : A† = AU U is unitary

(37)

A normal→ A is nondefective (geom.mult.=algb.mult.) (38)
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4 Canonical Forms
Jordan block Jk(λ) ∈Mk and Jordan matrix J ∈Mn:

Jk(λ) =


λ 1 0

λ
. . .
. . . 1

0 λ

 J =

 Jn1(λ1) 0
. . .

0 Jnk(λk)

 ,
k

∑
i

ni = n (39)

Jordan canonical form theorem: ∀A ∈Mn ∃ S,J : A = SJS−1

Where J is unique up to permutations of the diagonal Jordan blocks. By convention, the Jordan blocks corresponding to each
distinct eigenvalue are presented in decreasing order with the largest block first.
Minimal Polynomial qA(t) of A is the unique monic polynomial qA(t) of minimum degree that annihilates A. (monic: a
polynomial whose highest–order term has coefficient +1; annihilates: a polynomial whose value is the 0 matrix).
Similar matrices have the same minimal polynomial.
Minimal polynomial qA(t) divides the characteristic polynomial pA(t) = qA(t)hA(t). Also, qA(λ) = 0 ∀ λ ∈ σ(A).

qA(t) =
m

∏
i=1

(t−λi)ri , λi ∈ σ(A) (40)

Where ri is the order of the largest Jordan block of A corresponding to λi.
Polar decomposition: (rankP = rankA)

∀A : A = PU P positive semidifinite, U unitary
∀A nonsingular : A = GQ G = GT, QQT = I (41)

Singular value decomposition:

∀A : A = VΣW† V,W unitary, Σ nonnegative diagonal, rankΣ = rankA (42)

Triangular factorization:
∀A : A = URU† U unitary, R upper triangular (43)

Others:
∀A Hermitian : A = SIAS† S nonsingular, IA = diag ∈ {−1,0,+1} (44)

Where IA is a diagonal matrix with entries ∈ {−1,0,+1}. The number of +1(−1) entries in IA is the same as the number of
positive (negative) eigenvalues of A, the number of 0 entries is equal to (n− rankA).

∀A normal : A = UΛU† U unitary, Λ = diagλi ∈ σ(A)
∀A symmetric : A = SKAST S nonsingular, KA = diag ∈ {0,+1},

rankKA = rankA
∀A symmetric : A = UΣUT U unitary, Σ = diag≥ 0, rankΣ = rankA
∀U unitary : U = QeiE Q real orthogonal, E real symmetric
∀P orthogonal : P = QeiF Q real orthogonal, E real skew–symm.
∀A : A = SUΣUT S−1 S nonsingular, U unitary, Σ = diag≥ 0

(45)

LU factorization: is not unique. Only if all upper left principal submatrices of A are nonsingular (and A is nonsingular):

A = LU L lower triangular, U upper triangular, detA({1, ..,k}) 6= 0, k = 1, ..,n (46)

∀A nonsingular : A = PLU P permutation, L,U lower/upper triangular
∀A : A = PLUQ P,Q permutation, L,U lower/upper triangular (47)

5 Hermitian and Symmetric Matrices

∀ A


A+A†,AA†,A†A Hermitian
A−A† skew–Hermitian
A = HA +SA HA = A+A†

2 Hermitian, SA = A−A†

2 skew–Hermitian
A = EA + iFA EA,FA Hermitian, EA = HA, FA =−iSA

(48)

HA,SA,EA,FA are unique ∀A. HA,EA,FA ∈M(R).

HASA = SAHA ⇐⇒ A is normal (49)
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∀ A,B Hermitian→



Ak Hermitian ∀ k ∈ N≥0

A−1 Hermitian (A nonsingular)
aA+bB Hermitian ∀ a,b ∈ R
iA skew–Hermitian
x†Ax ∈ R ∀ x ∈ Cn

σ(A) ∈ R
S†AS Hermitian ∀ S
A normal (see 3.1)
AA† = A2 = A†A
A = UΛU† U unitary, Λ = diag ∈ σ(A) ∈ R
D = U†AU A is unitarily diagonalizable
v†

i v j = 0 i 6= j eigenvectors are othonormal
trace(AB)2 ≤ traceA2B2

rank(A) = number of nonzero eigenvalues

rank(A)≥ (traceA)2

traceA2

(50)

∀ A,B skew–Hermitian→

 aA+bB skew–Hermitian ∀ a,b ∈ R
iA Hermitian
σ(A) ∈ Imaginary

(51)

Commutivity of Hermitian matrices! Let W be a given family of Hermitian matrices:

∃ U unitary : DA = UAU†, DA is diagonal ∀A ∈W ⇐⇒ AB = BA ∀A,B ∈W (52)

A,B Hermitian→ AB Hermitian ⇐⇒ AB = BA (53)

But in general: AB 6= BA !!! and AB is in general not Hermitian!!!
A class of matrices where A is similar to its Hermitian (A∼ A†):

A∼ A† ⇐⇒


⇐⇒ A∼ B B ∈Mn(R)
⇐⇒ A∼ A†

⇐⇒ A∼ A† via a Hermitian similarity transformation
⇐⇒ A = HK H,K Hermitian
⇐⇒ A = HK H,K Hermitian with at least one nonsingular

(54)

A matrix A ∈Mn is uniquely determined by the Hermitian (sesquilinear) form x†Ax:

x†Ax = x†Bx ∀ x ∈ Cn ⇐⇒ A = B (55)

The class of hermitian matrices is closed under unitary equivalence.

A = A†, ∀ x : x†Ax =
{
≥ 0 → σ(A)≥ 0 A is positive semidifinite
> 0 A is positive difinite (56)

5.1 Variational characterization of eigenvalues of Hermitian matrices
Matrix A is a Hermitian matrix with eigenvalues λi ∈ R.
Convention for eigenvalues of Hermitian matrices: λmin = λ1 ≤ λ2 ≤ . . .≤ λn = λmax

Rayleigh–Ritz ratio: x†Ax
x†x

λ1x†x≤ x†Ax≤ λnx†x ∀ x ∈ Cn (57)

λmax = λn = max
x6=0

x†Ax
x†x

= max
x†x=1

x†Ax (58)

λmin = λ1 = min
x 6=0

x†Ax
x†x

= min
x†x=1

x†Ax (59)

Geometrical interpretation: λmax is the largest value of the function x†Ax as x ranges over the unit sphere in Cn, a compact set.
Analog is λmin the smallest (negative) value.

λn−1 = inf
w∈Cn

sup
x†x=1
x⊥w

x†Ax λ2 = sup
w∈Cn

inf
x†x=1
x⊥w

x†Ax (60)
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Courant–Fischer:

min
w1,w2,...,wn−k∈Cn

max
x†x=1,x∈Cn

x⊥w1,w2,...,wn−k

x†Ax = λk (61)

max
w1,w2,...,wk−1∈Cn

min
x†x=1,x∈Cn

x⊥w1,w2,...,wk−1

x†Ax = λk (62)

∀ B (even B 6= B†) → min
x†x=1

|x†Bx| ≤ |λi| ≤ max
x†x−1

|x†Bx|, 1≤ i≤ n (63)

The diagonal entries of A majorizes the vector of eigenvalues of A (comp. (1)):

∀ A,B Hermitian→

 diag(A) majorizes diag(Λ)
∏diag(A)≥∏diag(Λ) = ∏λi = det(A)
λi(A+B)≤min{λi(A)+λ j(B) : i+ j = k +n}

(64)

5.2 Complex symmetric matrices
A complex symmetric matrix need not to be normal.

A symmetric→ A = UΣUT (65)

U is unitary and contains an orthonormal set of eigenvectors of AA; Σ is a diagonal matrix with the nonnegative square roots
of eigenvalues of AA.

A = AT ⇐⇒ ∃ B : A = BBT (66)

∀ A ∈Mn→
{

A∼ S S symmetric!!
A = BC B,C symmetric!! (67)

5.3 Congruence and simultaneous diagonalization of Hermitian and symmetric matrices

General quadratic form: QA(x) = xT Ax =
n
∑

i, j=1
ai jxix j, x ∈ Cn

(General) Hermitian form: HB(x) = x†Bx =
n
∑

i, j=1
bi jxix j, x ∈ Cn

QA(Sx) = (Sx)T A(Sx) = xT (ST AS)x = QST AS(x)
HB(Sx) = (Sx)†B(Sx) = x†(S†BS)x = HS†BS(x)

i f∃ S : B = SAS† B is ∗congruent(“star–congruent”) to A (68)
i f∃ S : B = SAST B is T congruent(“tee–congruent”) to A (69)

Congruence is an equivalence relation.

A = A†→ SAS† = (SAS†)† congruence preserves type of matrix (70)

A congruent to B→
{

rankA = rankB
B congruent to A (71)

Inertia of Hermitian A : i(A) = (i+(A), i (A), i0(A)), where i+ is the number of positive eigenvalues, i of negative eigenvalues,
and i0 is the number of zero eigenvalues.
Signature of Hermitian A : i+(A)− i (A)
Inertia matrix: I(A) = diag(11,12, . . . ,1i+ ,−1i++1, . . . ,−1i++i ,0i++i +1, . . . ,0n)
Sylvester’s law of inertia: A,B Hermitian→∃ S : A = SBS† ⇐⇒ i(A) = i(B)→ A is congruent to B.
A,B are simultaneously diagonalizable by congruence if ∃ U unitary : UAU† and UBU† are both diagonal, or ∃ S : SAS† and
SBS† are both diagonal. The same works for symmetric matrices with the transpose operator.

5.4 Consimilarity and condiagonalization

A,B are consimilar if ∃ S : A = SBS−1
. If S can be taken to be unitary, A and B are unitarily consimilar. Special cases of

consimilarity include T congruence, ∗congruence, and ordinary similarity. Consimilarity is an equivalence relation.
A is contriangularizable if ∃ S : S−1AS is upper triangular. A is condiagonalizable if S can be chosen so that S−1AS is
diagonal.
A is unitarily condiagonalizable ⇐⇒ A is symmetric.
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Ax = λx — x is an coneigenvector of A, corresponding to the coneigenvalue λ. A matrix may have infinitely many distinct
coneigenvalues or it may have no coneigenvalues at all.

AA = I ⇐⇒ ∃ S : A = SS−1
(72)

∀ A ∈Mn : A is consimilar to A,A†,AT , to a Hermitian matrix, and to a real matrix.
∀ A ∈Mn : ∃ S1,S2 (symmetric), H1,H2 (Hermitian) such that A = S1H1 = H2S2

6 Norms for vectors and matrices
Let V be a vector space over a field F (R or C).
A function ‖·‖ : V→ R is a vector norm if ∀ x,y ∈ V:

‖x‖ ≥ 0 Nonnegative
‖x‖= 0 ⇐⇒ x = 0 Positive
‖cx‖= |c|‖x‖ ∀ c ∈ F Homogeneous
‖x+y‖ ≤ ‖x‖+‖y‖ Triangle inequality

 (73)

The Euclidean norm (or l2 norm) on Cn: ‖x‖2 =
√
|x1|2 + . . .+ |xn|2

The sum norm (or l1 norm) on Cn: ‖x‖1 = |x1|+ . . .+ |xn|
The max norm (or l∞ norm) on Cn: ‖x‖∞ = max{|x1|+ . . .+ |xn|}

The lp norm on Cn: ‖x‖p = p

√
n
∑

i=1
|x1|p

A function < ·, ·>: V×V→ F is an inner product if ∀ x,y,z ∈ V:
< x,x >≥ 0 Nonnegative
< x,x >= 0 ⇐⇒ x = 0 Positive
< x+y,z >=< x,z > + < y,z > Additive
< cx,y >= c < x,y > ∀ c ∈ F Homogeneous
< x,y >= < y,x > Hermitian property

 (74)

A function ‖| · |‖ : Mn→ R is a matrix norm if ∀ A,B ∈Mn:
‖|A‖| ≥ 0 Nonnegative
‖|A‖|= 0 ⇐⇒ A = 0 Positive
‖|cA‖|= |c|‖|A‖| ∀ c Homogeneous
‖|A+B‖| ≤ ‖|A‖|+‖|B‖| Triangle inequality
‖|AB‖| ≤ ‖|A‖|‖|B‖| Submultiplicative

 (75)

The maximum column sum matrix norm ‖| · |‖1 on Mn: ‖|A|‖1 = max
1≤ j≤n

n
∑

i=1
|ai j|

The maximum row sum matrix norm ‖| · |‖∞ on Mn: ‖|A|‖∞ = max
1≤i≤n

n
∑
j=1
|ai j|

The spectral norm ‖| · |‖2 on Mn: ‖|A|‖2 = max{
√

λ : λ is an eigenvalue of A†A}
General properties:

|< x,y > |2 ≤< x,x >< y,y >
‖x‖=

√
< x,x >

ρ(A)≤ ‖|A‖|
(76)

7 Positive Definite Matrices

A positive definite x†Ax > 0 ∀x ∈ Cn 6= 0 (77)
A positive semidefinite x†Ax≥ 0 ∀x ∈ Cn 6= 0 (78)

Similarly are the terms negative definite and negative semidefinite defined. If a Hermitian matrix is neither positive, nor negative
semidefinite, it is called indefinite.
Any principal submatrix of a positive definite matrix is positive definite.

A positive definite→

 σ(A) > 0
traceA > 0
detA > 0

(79)
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A positive definite ⇐⇒ σ(A) > 0 (80)
A positive def. Hermitian ⇐⇒ det(A) > 0 A Hermitian (81)

A positive definite ⇐⇒ ∃ C : A = C†C C nonsingular (82)
A positive definite ⇐⇒ ∃ L : A = LL† L nonsingular lower (83)

triangular with positive diag elements (84)
A positive semidefinite ⇐⇒ σ(A)≥ 0 (85)

A positive definite ⇐⇒ A−1 positive definite (86)
A positive definite ⇐⇒ Ak positive definite ∀ k ∈ N > 0 (87)

(88)

8 Matrices
Block diagonal matrix ⇐⇒ diagonal block matrix, is a square diagonal matrix in which the diagonal elements are square
matrices of any size (possibly even 1x1), and the off-diagonal elements are 0. A block diagonal matrix is therefore a block
matrix in which the blocks off the diagonal are the zero matrices, and the diagonal matrices are square.
The determinant of the a block diagonal matrix is the product of the determinants of the diagonal elements.
Square root of a matrix. This matrix has to be hermitian, positive semi–definite.
Orthogonal matrix Q : QQT = I
Symmetric matrix A : A = AT

Skew–Symmetric matrix A : A =−AT

Hermitian matrix A : A = A†

Skew–Hermitian matrix A : A =−A†

Positive semidefinite A← A = A†,σ(A) ∈ R>=0

Scalar matrix A : A = aI, a ∈ C

9 Rank and Range VS. Nullity and Null Space
The rank of a matrix An×m is the smallest value r for which exist Fn×r and Gr×m so that An×m = Fn×rGr×m:

rankAn×m = rank

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 = r with An×m = Fn×rGr×m (89)

Examples:
rank T6 = kk† = 1
rank T6 = 〈kk†〉 ≥ 1

T6→ A6#6, k→ F6#1 (90)

rankAn×m



= number of linearly independent vectors in A
≤ min(m,n)
= rankAT = rankA†

= dimension of the range of A
= rankAX = rankYA X,Y non-singular
= m−nullity An×m

(91)

rankAn×n

{
= n−nullity An×n
< n ⇐⇒ detAn×n = 0 ⇐⇒ |A|= 0 (92)

Range The range (or image) of An×m ∈ Fn×m is the subspace of vectors that equal Ax for all x ∈ Fm. The dimension of this
subspace is the rank of A.

range An×m = {Ax : x ∈ Fm} (93)

Null space and Nullity The null space (or kernel) of An×m ∈ Fn×m is the subspace of vectors x ∈ Fm for which Ax = 0. The
dimension of this subspace is the nullity of A.

null space An×m = {x ∈ Fm : Ax = 0}

The range of A is the orthogonal complement of the null space of A† and vice versa (the null space of A is the orthogonal
complement of the range of A†).
The rank of a matrix plus the nullity of the matrix equals the number of columns of the matrix.
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10 Diverse

10.1 Basis Transformation

Vector: v = Mu (94)
Matrix: V = MUM† (95)

If M ∈ Rn×n is real symmetric, then is ω†Mω also real (ω ∈ Cn).

10.2 Nilpotent Matrix
A matrix A is nilpotent to index k if Ak = 0, but Ak−1 6= 0.

A nilpotent at index k→


detA = 0
σ(A) = {0}
minimal polynomial of A is tk

(96)

11 Groups
A group is a set that is closed under a single associative binary operation (multiplication) and such that the identity for and
inverses under the operation are contained in the set.

1. The nonsingular matrices in Mn(F) form the general linear group — GL(n,F)

2. The set of unitary (respectively real orthogonal) matrices in Mn form the n-by-n unitary group (subgroup of GL(n,C)).

12 Diverse

12.1 Joint Diagonalization
The joint diagonalization of a set of square matrices consists in finding the orthonormal change of basis which makes the
matrices as diagonal as possible. When all the matrices in the set commute, this can be achieved exactly. When this is not
the case, it is always possible to optimize a joint diagonality criterion. This defines an approximate joint diagonalization.
When the matrices in the set are ‘almost exactly jointly diagonalizable’, this approach also defines something like the ‘average
eigen-spaces’ of the matrix set.

A Example 2×2 Matrix

A =
[

a b
c d

]
∈ C2×2 (97)

pA(t) = t2− (a+d)t +(ad−bc) (98)

σ(A) =

{
a+d±

√
(a−d)2 +4bc

2

}
(99)

detA = ad−bc (100)

B IDL–SAR convention: mathematical notation!
Always mathematically correct!!! First index: row number, second: column number. Mrow,col = C[row,col]

An×m =

a11 . . . a1m
...

. . .
...

an1 . . . anm

 = a[y,x]

Always: transpose the given mathematical matrix after generation!!! (no complex conjugate!)

Matrix M =
[

a b
c d

]
, M1,2 = b, M2,1 = c



C NOTATION CONVENTIONS 10

In IDL: M ⇐⇒ C =
[

a c
b d

]
= MT , so that C[1,2] = b, C[2,1] = c

Examples:
Ar ⇐⇒ IDL: A← AT

r $ A=transpose(Ar)
Cr = ArBr ⇐⇒ IDL: C← CT

r = (ArBr)T $ C=transpose(Ar ## Br)
= (AT BT )T = (BA) $ C=B##A=A#B

Cr = ArB†
r ⇐⇒ C← CT

r = (ArB†
r )

T

= (AT B)T = B†A $ C=A#adj(B)
Cr = AT

r Br ⇐⇒ C← CT
r = (AT

r Br)T

= (ABT )T = BAT $ C=transpose(A)#B
Cr = k1rk†

2r ⇐⇒ C = CT
r = (k1rk†

2r)
T

= (kT
1 k2)T = k†

2k1 $ C=k1#adj(k2)
= ArBrCr ⇐⇒ (ArBrCr)T

= (AT BT CT )T = CBA $ A#B#C
Arkr ⇐⇒ (Arkr)T = (AT kT )T = kA $ A#k
A−1

r ⇐⇒ (A−1
r )T = (AT

r )−1?

(101)

Short summary : every matrix and vector should be considered as transposed, in relation between math and IDL.
In mathematics first index is the y–row–index, the second is the x–column-index! In IDL its reversed: first x–column– and then
y–row–index.
Using these notations one can use all kinds of matrix multiplications and transpose/conjugate in the mathematical order with #.
(e.g. in mathematics w†Tw will correspond in IDL to ad j(w)#T #w, but it should be considered that w and T are transposed:
T = TT and w = wT . i.e. w is a row–array during w is a column–vector.)

Matrix input/output in IDL : To give a matrix from math–book or paper into IDL you have to transpose it (before input or
right after). To read out the correct values, you have also to transpose the IDL matrix. Since the mathematical matrix indexing
and the IDL matrix indexing are transposed and we also transpose the matrix between these systems, the values have the same
indices in mathematical matrices with mathematical indexing as in IDL matrices with IDL indexes! (i.e. A(1,2)m = A[1,2]IDL)
Consider these (right!) cases: T 6 = TT

6 , T12 = T6(0 : 2,3 : 5)m = T6[3 : 5,0 : 2]IDL, T 12 = T 6[0 : 2,3 : 5]IDL = T 6(3 : 5,0 : 2)m,
T12 = transp(T 12).

Conclusion : Transpose matrices by input/output! And everything else can be used as in mathematical notation: order, matrix
multiplication (with #), indices, transpose, conjugate, etc...

C Notation Conventions
Capital bold letters reference to matrices, small bold letter to vectors.
A is a matrix with dimensions n×n if no other dimensions are supplied.
T : transpose
†: transpose conjugate complex.
∗: conjugate complex.

D Mathematical Glossary
inf: is the infimum of a set (max over a set with bounds)
sup: is the supremum of a set (min over a set with bounds)
inf(S) =−sup(−S)
Hadamard Product: A◦B is the element-wise multiplication of matrices.

References
[1] G.H. Golub and C.F. Van Loan. Matrix Computation, volume 3. The Johns Hopkins University Press, 1996. recommended

by Hongwei Zheng.

[2] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[3] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.

[4] G Strang. Introduction to Linear Algebra. Wellesley Cambridge Press, 1998.


