
Chapter 3

Hermite polynomials, spacings and

limit distributions for the Gaussian

ensembles

——from ‘An Introduction to Random Matrices’, Anderson-Guionnet-Zeitouni

In this chapter, the analysis of asymptotics for the joint eigenvalue distribution is presented
for the Gaussian ensembles: the GOE, GUE and GSE. As it turns out, the analysis takes a
particularly simple form for the GUE, because then the process of eigenvalues is a determinantal
process. (We postpone to Section 4.2 a discussion of general determinantal processes, opting to
present here all computations with bare hands.) In keeping with our goal of making this chapter
accessible with minimal background, in most of this chapter we consider the GUE, and discuss
the other Gaussian ensembles in Section 3.9. Generalizations to other ensembles, refinements
and other extensions are discussed in Chapter 4 and in the bibliographical notes.
Recall some useful definitions of Gaussian ensembles given in Chapter 2:

Let {ξi,j , ηi,j}∞i,j=1 be an i.i.d. family of real mean 0 variance 1 Gaussian random variables. We
define

P
(1)
2 , P

(1)
3 , ...

to be the laws of the random matrices

[
√
2ξ1,1 ξ1,2
ξ1,2

√
2ξ2,2

]

∈ H
(1)
2 ,





√
2ξ1,1 ξ1,2 ξ1,3
ξ1,2

√
2ξ2,2 ξ2,3

ξ1,3 ξ2,3
√
2ξ3,3



 ∈ H
(1)
3 , . . .

respectively. We define

P
(2)
2 , P

(2)
3 , ...

to be the laws of the random matrices

[

ξ1,1
ξ1,2+iη1,2√

2
ξ1,2−iη1,2√

2
ξ2,2

]

∈ H
(2)
2 ,









ξ1,1
ξ1,2+iη1,2√

2

ξ1,3+iη1,3√
2

ξ1,2−iη1,2√
2

ξ2,2
ξ2,3+iη2,3√

2
ξ1,3−iη1,3√

2

ξ2,3−iη2,3√
2

ξ3,3









∈ H
(2)
3 , . . .

respectively. A random matrix X ∈ H
(β)
N with law P

(β)
N is said to belong to the Gaussian

orthogonal ensemble (GOE) or the Gaussian unitary ensemble (GUE) according as β = 1 or
β = 2, respectively. (We often write GOE(N) and GUE(N) when an emphasis on the dimension
is needed.) The theory of Wigner matrices developed in previous sections of this book applies
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here. In particular, for fixed β, given for each N a random matrix X(N) ∈ H
(β)
N with law P

(β)
N ,

the empirical distribution of the eigenvalues of XN := X(N)/
√
N tends to the semicircle law of

mean 0 and variance 1.

3.1 Summary of main results: spacing distributions in the bulk

and edge of the spectrum for the Gaussian ensembles

We recall that the N eigenvalues of the GUE/GOE/GSE are spread out on an interval of width
roughly equal to 4

√
N , and hence the spacing between adjacent eigenvalues is expected to be of

order 1/
√
N .

3.1.1 Limit results for the GUE

Theorem 3.1.1 (Gaudin - Mehta). For any compact set A ⊂ R,

lim
N→∞

P [
√
NλN1 , . . . ,

√
NλNN /∈ A]

= 1 +
∞
∑

k=1

(−1)k

k!

∫

A
. . .

∫

A
detki,j=1Ksine(xi, xj)Π

k
j=1dxj , (3.1)

where

Ksine(x, y) =

{

1
π
sin(x−y)

x−y , x 6= y,
1
π , x = y.

Theorem 3.1.2 (Jimbo - Miwa - Mori - Sato). One has

lim
N→∞

P [
√
NλN1 , . . . ,

√
NλNN /∈ (−t/2, t/2)] = 1− F (t),

with

1− F (t) = exp

(
∫ t

0

σ(x)

x
dx

)

for t ≥ 0,

with σ the solution of
(tσ′′)2 + 4(tσ′ − σ)(tσ′ − σ + (σ′)2) = 0,

so that

σ = − t

π
− t2

π2
− t3

π3
+O(t4) as t ↓ 0.

The differential equation satisfied by σ is the σ -form of Painleve V. Note that Jimbo-Miwa-
Mori-Sato implies that F (t) → 0 as t → 0. Additional analysis yields that also F (t) → 1 as
t→ ∞, showing that F is the distribution function of a probability distribution on R+.
We now turn our attention to the edge of the spectrum.

Definition 3.1.3. The Airy function is defined by the formula

Ai(x) =
1

2πi

∫

C
eζ

3/3−xζdζ

where C is the contour in the ζ-plane consisting of the ray joining e−πi/3∞ to the origin plus
the ray joining the origin to e−πi/3∞.
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The Airy kernel is defined by

KAiry(x, y) = A(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
,

where the value for x = y is determined by continuity.
By differentiating under the integral and then integrating by parts, it follows that Ai(x), for
x ∈ R, satisfies the Airy equation:

d2y

dx2
− xy = 0

The fundamental result concerning the eigenvalues of the GUE at the edge of the spectrum:

Theorem 3.1.4. For all −∞ < t ≤ T ≤ ∞,

lim
N→∞

P

[

N2/3

(

λNi√
N

− 2

)

/∈ [t, T ], i = 1, . . . , N

]

= 1 +
∞
∑

k=1

(−1)k

k!

∫ T

t
. . .

∫ T

t
detki,j=1A(xi, xj)Π

k
j=1dxj , (3.2)

where A is the Airy kernel. In particular,

lim
N→∞

P

[

N2/3

(

λNN√
N

− 2

)

≤ t

]

= 1 +

∞
∑

k=1

(−1)k

k!

∫ ∞

t
. . .

∫ ∞

t
detki,j=1A(xi, xj)Π

k
j=1dxj ,=: F2(t). (3.3)

Note that the statement of this theorem does not ensure that F2 is a distribution function (and
in particular, does not ensure that F2(−∞) = 0), since it only implies the vague convergence,
not the weak convergence, of the random variables λNN/

√
N − 2. The latter convergence, as well

as a representation of F2, are contained in the following.

Theorem 3.1.5 (Tracy-Widom). The function F2(·) is a distribution function that admits
the representation

F2(t) = exp

(

−
∫ ∞

t
(x− t)q(x)2dx

)

,

where q satisfies
q = tq + 2q3, q(t) ∼ Ai(t) as t→ ∞ (3.4)

The function F2(·) is the TracyWidom distribution. Equation (3.4) is the Painleve II equation.

3.1.2 Generalizations: limit formulas for the GOE and GSE

For β = 1, 2, 4, let λ(β,n) = (λ
(β,n)
1 , ..., λ

(β,n)
n ) be a random vector in R with the law P

(β)
n , see

(2.5.6) in Chapter 2, possessing a density with respect to Lebesgue measure proportional to
|∆(x)|βe−β|x|2/4. (Thus, β = 1 corresponds to the GOE, β = 2 to the GUE and β = 4 to the
GSE.) Consider the limits

1− Fβ,bulk(t) = lim
n→∞

P ({√nλ(β,n)} ∩ (−t/2, t/2) = ∅), for t > 0,

Fβ,edge(t) = lim
n→∞

P ({n1/6(λ(β,n) − 2
√
n)} ∩ (t,∞) = ∅), for all real t.

The existence of these limits for β = 2 follows from Theorems 3.1.2 and 3.1.4, together with
Theorem 3.1.5. Further, from Lemma 3.6.6 below, we also have

3



1− F2,bulk(t) = exp

(

− t

π
−
∫ t

0
(t− x)r(x)2dx

)

,

where

t2((tr)′′ + (tr))2 = 4(tr)2((tr)2 + ((tr)′)2), r(t) =
1

π
+

t

π2
+Ot↓0(t

2).

The following is the main result of the analysis of spacings for the GOE and GSE.

Theorem 3.1.6. The limits 1Fβ,bulk(β = 1, 4) exist and are as follows:

1− F1,bulk(t)
√

1− F2,bulk(t)
= exp

(

−1

2

∫ t

0
r(x)dx

)

, (3.5)

1− F4,bulk(t/2)
√

1− F2,bulk(t)
= cosh

(

−1

2

∫ t

0
r(x)dx

)

. (3.6)

Theorem 3.1.7. The limits 1Fβ,edge(β = 1, 4) exist and are as follows:

F1,edge(t)
√

F2,edge(t)
= exp

(

−1

2

∫ ∞

t
r(x)dx

)

, (3.7)

F4,edge(t/2
2/3)

√

F2,edge(t)
= cosh

(

−1

2

∫ ∞

t
r(x)dx

)

. (3.8)

3.2 Hermite polynomials and the GUE

3.2.1 The GUE and determinantal laws

Definition 3.2.1. (a) The nth Hermite polynomial Hn(x) is defined as

Hn(x) := (−1)nex
2/2 d

n

dxn
e−x2/2.

(b) The nth normalized oscillator wave-function is the function

ψn(x) =
e−x2/4Hn(x)
√√

2πn!
.

Set

K(N)(x, y) =
N−1
∑

k=0

ψk(x)ψk(y).

Lemma 3.2.4. For any mearable subset A of R,

P
(2)
N (∩N

i=1{λi ∈ A}) = 1 +

∞
∑

k=1

(−1)k

k!

∫

Ac

· · ·
∫

Ac

k
det
i,j=1

K(N)(xi, xj)Π
k
i=1dxi.

3.2.2 Properties of the Hermite polynomials and oscillator wave-functions

3.3 The semicircle law revisited

3.3.1 Calculation of moments of LN

3.3.2 The Harer - Zagier recursion and Ledoux’s argument

This section provides the proof of the following lemma.
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Lemma 3.3.2 (Ledoux’s bound). there exist positive constants c′ and C ′ suchh that

P

(

λNN
2
√
N

≥ eN
−2/3ǫ

)

≤ C ′e−c′ǫ,

for all N ≥ 1 and ǫ > 0.

Roughly speaking, the last inequality says that fluctuations of the rescaled top eigenvalue λ̃NN :=
λNN/2

√
N − 1 above 0 are of order of magnitude N−2/3. This is an a priori indication that the

random variables N2/3λ̃NN converge in distribution, as stated in Theorems 3.1.4 and 3.1.5. In
fact, this inequality is going to play a role in the proof of Theorem 3.1.4, (see Subsection 3.7.1).

3.4 Quick introduction to Fredholm determinants

3.4.1 The setting, fundamental estimates and definition of the Fredholm de-

terminant

Let X be a locally compact Polish space, with BX denoting its Borel σ-algebra. Let ν be a
complex-valued measure on (X,BX), such that

||ν||1 =
∫

X
|ν(dx)| <∞.

(In many applications, X = R, and ν will be a scalar multiple of the Lebesgue measure on a
bounded interval).

Definition 3.4.1. A kernel is a Borel measurable, complex-valued function K(x, y) defined on
X ×X such that

||K|| := sup
(x,y)∈X×X

|K(x, y)| <∞.

The trace of a kernel K(x, y) (with respect to ν) is

tr(K) =

∫

K(x, x)dν(x).

Define the Fredholm determinant associated with a kernel K(x, y). For n > 0, put

∆n = ∆n(K, ν) =

∫

· · ·
∫

n
det
i,j=1

K(ξi, ξj)dν(ξ1) · · · dν(ξn),

setting ∆0 = ∆0(K,n) = 1.

Definition 3.4.3. The Fredholm determinant associated with the kernel K is defined as

∆(K) = ∆(K, ν) =
∞
∑

n=0

(−1)n

n!
∆n(K, ν).

The determinants ∆(K) inherit good continuity properties with respect to the || · ||norm.

Lemma 3.4.5. For any two kernels K(x, y) and L(x, y) we have

|∆(K)−∆(L)| ≤
( ∞
∑

n=1

n1+n/2||ν||n1 ·max (||K||, ||L||)n−1

n!

)

· ||K − L||.
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3.4.2 Definition of the Fredholm adjugant, Fredholm resolvent and a funda-

mental identity

3.5 Gap probabilities at 0 and proof of Theorem 3.1.1

Set

S(n)(x, y) =
1√
n
K(n)

(

x√
n
,
y√
n

)

.

Lemma 3.5.1. With the above notation, it holds that

lim
n→∞

S(n)(x, y) =
1

π

sin(x− y)

x− y
,

uniformly on each bounded subset of the (x, y)-plane.

Proof of Theorem 3.1.1. Recall that by Lemma 3.2.4,

P [
√
nλ

(n)
1 , . . . ,

√
nλ

(n)
n /∈ A]

= 1 +
∞
∑

k=1

(−1)k

k!

∫

√
n
−1

A
. . .

∫

√
n
−1

A

k
det
i,j=1

K(n)(xi, xj)Π
k
j=1dxj ,

= 1 +
∞
∑

k=1

(−1)k

k!

∫

A
. . .

∫

A

k
det
i,j=1

S(n)(xi, xj)Π
k
j=1dxj .

(The scaling of Lebesgues measure in the last equality explains the appearance of the scaling
by 1/

√
n in the definition of S(n)(x, y).) Lemma 3.5.1 together with Lemma 3.4.5 complete the

proof of the theorem.

The proof of Lemma 3.5.1 takes up the rest of this section.

3.5.1 The method of Laplace

3.5.2 Evaluation of the scaling limit: proof of Lemma 3.5.1

3.5.3 A complement: determinantal relations
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