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A summary of large deviations

Motivating example: when CLT is not a good approximation. Consider a particular location where,
on average, there is one earthquake every four days. What is the probability to have more that 100 earthquakes in
one year (365 days)? The Poisson process model implies that the number of earthquakes in one year is P(91.25),
that is, the Poisson random variable with mean 91.25 = 365/4. Then the answer, P(P(91.25) > 100) ≈ 0.17, can be
computed using a statistical package. Without such a package, one can use the normal approximation of the Poisson
distribution, P(θ) ≈ N (θ, θ), θ → ∞, leading to the approximate answer

P(P(91.25) > 100) ≈ P
(
N (0, 1) >

100− 91.25√
91.25

)
≈ P(N (0, 1) > 0.97) ≈ 0.17.

Now let us change the numbers, and assume that, on average, there is one earthquake every two days. What is

the probability to have more than 128 earthquakes in 132 days? The same statistical package produces the an-

swer P(P(66) > 128) ≈ 4.6 · 10−12, which is very small. An application of the normal approximation leads to

P(P(66) > 128) ≈ P(N (0, 1) > 7.6) ≈ 1.5 · 10−14 which is also very small, but is off by a factor of more than 300.

Deviations from the law of large numbers.

The setting. Let X,X1, X2, . . . be iid with EX = 0, EX2 = 1, and define Sn = X1 + . . . + Xn. If
x > 0, then, by the LLN, limn→∞ P(Sn/n > x) = 0, and, by CLT, limn→∞ P(Sn/

√
n > x) = 1 − Φ(x),

where Φ is the standard normal cdf. We now consider a sequence {xn, n ≥ 1} of positive numbers and
look at the asymptotic of the probability P(Sn/

√
n > xn) = P(Sn/n > xn/

√
n), n → ∞, either by itself or

by comparing it with P(N (0, 1) > xn). We get the following regimes depending on the behavior of xn as
n → ∞,

• Normal deviations (CLT) if xn = O(1), n → ∞;
• Moderate deviation if xn → +∞ but xn/

√
n → 0;

• Large deviations if xn = O(
√
n);

• Super-large deviations if xn/
√
n → +∞.

Logarithmic asymptotic: for two sequences an > 0, bn > 0 we write an ≍ bn if limn→∞
ln an
ln bn

= 1.

The result. Assume that the moment generating function MX(λ) = EeλX of X is defined in some
neighborhood of λ = 0. Then, for every measurable set A ⊂ R with 0 /∈ A and every β > 1/2,

P
(
Sn

nβ
∈ A

)
≍ exp

(
− nγ(β) inf

x∈A
Iβ(x)

)
, (1.1)

where

• If 1/2 < β < 1 (moderate deviations), then γ(β) = 2β − 1 and Iβ(x) = x2/2;

• If β = 1 (large deviations), then γ = 1 and Iβ(x) = supλ

(
λx−lnMX(λ)

)
is the Legendre transform

of MX ;
• If β > 1 (super-large deviations), then more detailed information about MX is necessary to deter-
mine γ and Iβ. [For example, if |X| < 1 and x > 0, then P(|Sn|/n2 > x) = 0 for all n > 1/x.]

We see that the moderate deviations are, in a sense, trivial (the right-hand side of (1.1) does not depend
on X), whereas the super-large deviations depend on X too much; large deviations are accurate enough to
be useful and loose enough to be correct1.

General theory.

Definition. A family {Pε, ε > 0} of probability measures on a complete separable metric space V with
Borel sigma-algebra B(V) obeys/satisifies the large deviations principle (LDP) with rate function
I : V → [0,+∞] if

• the function I is lower semi-continuous;
• for every closed set C ⊂ V,

lim sup
ε→0

ε lnPε(C) ≤ − inf
x∈C

I(x); (1.2)

• for every open set G ⊂ V,

lim inf
ε→0

ε lnPε(G) ≥ − inf
x∈G

I(x). (1.3)

1A. Dembo and O. Zeitouni, Large Deviations: Techniques and Applications, Springer.
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Immediate extensions.

(1) Lower semi-continuity of the function I means that the set Ia = {x ∈ V : I(x) ≤ a} is closed in V
for every a ∈ R. If instead all sets Ia are compact, then the rate function I is called good.

(2) If A ∈ B(V) is a measurable set with interior Aint and closure Acl, then (1.2) and (1.3) can be
combined into

− inf
x∈Aint

I(x) ≤ lim inf
ε→0

ε lnPε(A) ≤ lim sup
ε→0

ε lnPε(A) ≤ − inf
x∈Acl

I(x). (1.4)

The set A is called regular if

Pε(A) ≍ e−ε−1 infx∈A I(x),

that is, limε→0 ε lnPε(A) = − infx∈A I(x)
(3) The family {Pε, ε > 0} is called exponentially tight if, for every c > 0, there exists a compact

set Kc ⊂ V such that lim supε→0 ε lnPε(V \Kc) ≤ −c.
(4) The family {Pε, ε > 0} satisfies local/weak/vague LDP if there is a lower semi-continuous function

I : V → [0,+∞] such that, for every x ∈ V,
lim
δ→0

lim
ε→0

ε lnPε

(
Bδ(x)

)
= −I(x), (1.5)

where Bδ(x) is the ball in V with center at x and radius δ.
(5) Theorem.

• (1.3) + (1.2) for compact sets C ⇒ (1.5) ⇒ uniqueness of I.
• LDP + Expo. tightness ⇒ Good rate function; LDP + Good rate function ⇒ Expo. tightness
• (1.5) ⇒ (1.3); (1.5) ⇒ (1.2) for compact sets C.
• (1.5)+ Exponential tightness ⇒ LDP (with good rate function).

(6) The original setting can be further extended to a regular Hausdorff topological space V with a
sigma-algebra other than B(V), but then some of the above results (e.g. equivalence of (1.4) and
(1.2)+(1.3)) might no longer hold. Still, such an extension can be useful, for example, if we want
to do LDP on a non-separable space like L∞((0, T )).

Contraction principle. If {Pε, ε > 0} obeys LDP on V and f : V → U is a continuous mapping, then
{Pε ◦ f−1, ε > 0} obeys LDP on U.

Main examples.

(1) Level 1 large deviations: Cramér’s theorem. IfX,X1, X2, . . . are iid with EX = 0, MX(λ) =
EeλX < ∞, |λ| < δ, δ > 0, and Pε(A) = P(Sn/n ∈ A), ε = 1/n, then the family {Pε, ε > 0}
satisfies LDP on (R,B(R)) with the good rate function I(x) = supλ

(
λx− lnMX(λ)

)
.

(2) Level 2 large deviations: Sanov’s theorem. Let X,X1, X2, . . . be iid with distribution
µX(A) = P(X ∈ A), and define the empirical measure µ̄n(A) = n−1

∑n
k=1 1(Xk ∈ A). Let

V be the collection of probability measures on R equipped with the Lèvy-Prokhorov metric. With
ε = 1/n and A ∈ B(V), define Pε(A) = P(µ̄n ∈ A). Then the family {Pε, ε > 0} satisfies LDP
on (V,B(V)) with the good rate function I(ν) =

∫
R ln(dν/dµX ) dν if ν ≪ µX and I(ν) = +∞

otherwise. Note that the rate function in this case is the relative entropy/Kullback-Liebler diver-
gence, and an extension to random elements with values in a complete separable metric space is
immediate.

(3) Level 3 large deviations: Donsker-Varadhan theory. The main object is the empirical

process that encodes not only the usual empirical distribution, but also all possible joint empirical
distributions (for pairs, triplets, etc.)

(4) Functional/Pathwise LDP: Mogulskii’s theorem. Let X,X1, X2, . . . be iid, EX = 0, EX2 =
1, MX(λ) = EeλX < ∞, λ ∈ R, and let Sn(t), t ∈ [0, 1], be the continuous interpolation of

n−1
∑[nt]

k=1Xk. With ε = 1/n, define Pε as the distribution of Sn in the space of continuous functions

on [0, 1]. Then the family {Pε, ε > 0} satisfies LDP with a good rate function J(φ) =
∫ 1
0 I(φ̇(t)) dt

for absolutely continuous φ with φ(0) = 0; I is the rate function from Cramér’ theorem.
(5) Functional/Pathwise LDP: Wentzell-Freidlin theory. If Pε is the distribution, in the space

of continuous functions on [0, T ], of the solution of dX = b(X)dt+
√
εσ(X)dW (t), t ∈ [0, T ], then,

under some natural conditions on b and σ, we get LDP with a good rate function.
(6) The Gaussian case. If X is a V-valued, zero-mean Gaussian random element with Cameron-

Martin space HX and Pε(A) = P(
√
εX ∈ A), then the LDP holds with the good rate function

I(x) = ∥x∥2HX
/2, x ∈ HX , I(x) = +∞, x /∈ HX . The lower bound (1.3) follows immediately from

Borell’s inequality for shifted measures.


