
Inhomogeneous Equations and Inhomogeneous Boundary Conditions1

Abstract evolution equations.
Recall that a (linear) equation Au = 0, where A is a (linear) operator is called homogeneous; Au = f is

the corresponding inhomogeneous equation.
An evolution equation is an equation involving time, and we often write evolution equations in the

form

(1) ut = Au+ f(t),

that is, ignoring all other variables. The wave equation utt = c2∆u can be written as (1) using the usual
matrix-vector trick ut = v, vt = c2∆u so that

A =

(
0 1
c2∆ 0

)
.

The basic facts about linear evolutions equations are as follows.

(1) Superposition principle:The general solution of the inhomogeneous equation is equal to the
sum of the general solution of the homogeneous equation and any one particular solution of the
inhomogeneous equation;

(2) Variation of parameters: If the solution of the homogeneous equation

Ut = AU, U |t=0 = h,

is written as

(2) U(t) = eAth

then the solution of (1) with the same initial condition u|t=0 = f is

(3) u(t) = eAth+

∫ t

0
eA(t−s)f(s) ds.

The exponential notation in (2) is just a notation. It is motivated by the matrix exponential and is a
well-known relation when A is a number [so that you are dealing with a first-order linear ODE]. In fact,
when A is a matrix, then (2), (3) are also (well-known) formulas for ODEs. Similar to ODEs, (3) is often
called the variation of parameters formula.

In the case of the heat equation in Rn, A = a∆, and

eAth = eAth(x) =
1

(4πat)n/2

∫
Rn

e−|x−y|2/(4at)h(y) dy

so that, according to (3), the solution of

ut = auxx + f(t, x), t > 0, x ∈ R,
with initial condition u(0, x) = h(x), is

(4) u(t, x) =
1√
4πat

∫ ∞

−∞
e−(x−y)2/(4at)h(y) dy +

∫ t

0

1√
4πa(t− s)

(∫ ∞

−∞
e−(x−y)2/(4a(t−s))f(s, y) dy

)
ds

In the same way, the solution of

utt = c2uxx + f(t, x), t > 0, x ∈ R,
with initial condition u(0, x) = h(x), ut(0, x) = g(x) is

(5) u(t, x) =
h(x+ ct) + h(x− ct)

2
+

1

2c

x+ct∫
x−ct

g(y) dy +
1

2c

∫ t

0

 x+c(t−s)∫
x−c(t−s)

f(s, y) dy

 ds.

On the one hand, both (4) and (5) are particular cases of (3) [of course, (5) requires some extra work, with
back-and-forth between the original equation and its matrix-vector formulation]. On the other hand, (4)
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and (5) are important in their own rights and often go under the name Duhamel’s principle. Note also
a certain analogy between (5) and the corresponding ODE formula: if

y′′(t) + c2y(t) = f(t)

then

y(t) = y(0) cos(ct) +
y′(0)

c
sin(ct) +

1

c

∫ t

0
sin(c(t− s))f(s) ds.

Inhomogeneous boundary conditions. So far, most of the the equations we solved completely had
homogenous boundary conditions of the form u|∂G = 0. On the other hand, the interesting equation [for
battle ropes and transatlantic cable] had something happening at one point of the boundary: u(t, 0) = f(t),
that is, an inhomogeneous boundary condition.

The general rule in this regard is that you come up with a suitable function w that satisfies the boundary
conditions, and then introduce a new unknown function v = u−w so that v satisfies homogeneous boundary
conditions. Depending on your choice of the function w, the equation for v might be different from the
equation satisfied by u. Here are some examples (in addition to the battle ropes in the previous set of
notes).

Example 1.
ut = uxx, u(t, 0) = A, u(t, L) = B

[heat in the rod with ends held at fixed, and different, temperatures]. Then we take

w(x) = A+
B −A

L
x

because w(0) = A, w(L) = B and w is the easiest function interpolating between A and B. Then
wt = wxx = 0 so that u(t, x) = v(t, x) + w(x), where vt = vxx and v(t, 0) = v(t, L) = 0.

Example 2.
utt = c2uxx, x > 0, u(t, 0) = f(t).

We start by writing u(t, x) = v(t, x) + f(t), so that v(t, 0) = 0, but we cannot stop here because the
equation is still on the half-line, whereas we only know bounded intervals or the whole line. In other words,
we have to extend the function v to the whole line while ensuring v(t, 0) = 0. An odd extension, also
known under a fancier name the method of reflection, does the trick:

(6) v(t, x) =

{
u(t, x)− f(t), x > 0

−u(t,−x) + f(t), x < 0.

Then, after some extra work, we get an inhomogeneous wave equation for v:

vtt = c2vxx − f ′′(t)sgn(x),

where

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0.

Then (5) leads to

V (t, x) =

{
f
(
t− x

c

)
, x < ct

0 x ≥ ct.

Example 3.
ut = auxx, x > 0, t > 0; u(t, 0) = f(t).

This time (6) leads to
vt = a2vxx − f ′(t)sgn(x)

and then (4) leads to

u(t, x) =

∫ t

0

x√
4πa(t− s)3

e−x2/(4a(t−s))f(s) ds.


