Inhomogeneous Equations and Inhomogeneous Boundary Conditions'

Abstract evolution equations.

Recall that a (linear) equation Au = 0, where A is a (linear) operator is called homogeneous; Au = f is
the corresponding inhomogeneous equation.

An evolution equation is an equation involving time, and we often write evolution equations in the
form

(1) up = Au+ f(t),

that is, ignoring all other variables. The wave equation uy = ¢>Awu can be written as (1) using the usual
matrix-vector trick u; = v, v; = ¢>Awu so that

0o 1
AZ(&A 0>'

The basic facts about linear evolutions equations are as follows.

(1) Superposition principle:The general solution of the inhomogeneous equation is equal to the
sum of the general solution of the homogeneous equation and any one particular solution of the
inhomogeneous equation;

(2) Variation of parameters: If the solution of the homogeneous equation

U, = AU, Ulj—g = h,

is written as

(2) U(t) = en
then the solution of (1) with the same initial condition u|—o = f is
t
(3) u(t) = eth + / eAl=9) £ () ds.
0

The exponential notation in (2) is just a notation. It is motivated by the matrix exponential and is a
well-known relation when A is a number [so that you are dealing with a first-order linear ODE]. In fact,
when A is a matrix, then (2), (3) are also (well-known) formulas for ODEs. Similar to ODEs, (3) is often
called the variation of parameters formula.

In the case of the heat equation in R", A = aA, and
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so that, according to (3), the solution of
U = gy + f(t,x), t >0, x € R,
with initial condition u(0,x) = h(zx), is
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In the same way, the solution of
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Uy = gy + f(t,z), t >0, z €R,
with initial condition u(0,x) = h(z), u(0,z) = g(z) is
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On the one hand, both (4) and (5) are particular cases of (3) [of course, (5) requires some extra work, with
back-and-forth between the original equation and its matrix-vector formulation]. On the other hand, (4)
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and (5) are important in their own rights and often go under the name Duhamel’s principle. Note also
a certain analogy between (5) and the corresponding ODE formula: if

y'(t) + Py(t) = f(t)

y'(0)

then

t
y(t) = y(0) cos(ct) + sin(ct) + % / sin(c(t — s)) f(s) ds.
0

Inhomogeneous boundary conditions. So far, most of the the equations we solved completely had
homogenous boundary conditions of the form u|sg = 0. On the other hand, the interesting equation [for
battle ropes and transatlantic cable] had something happening at one point of the boundary: u(t,0) = f(¢),
that is, an inhomogeneous boundary condition.

The general rule in this regard is that you come up with a suitable function w that satisfies the boundary
conditions, and then introduce a new unknown function v = u—w so that v satisfies homogeneous boundary
conditions. Depending on your choice of the function w, the equation for v might be different from the
equation satisfied by u. Here are some examples (in addition to the battle ropes in the previous set of
notes).

Example 1.

Ut = Ugy, u(t,0) =A, u(t,L)=1B
[heat in the rod with ends held at fixed, and different, temperatures]. Then we take
B-A

L
because w(0) = A, w(L) = B and w is the easiest function interpolating between A and B. Then
Wy = Wy = 0 so that u(t, z) = v(t,x) + w(z), where v; = vy, and v(t,0) = v(t, L) = 0.

Example 2.

w(z) =A+ x

U = Clge, = >0, u(t,0) = f(t).
We start by writing u(t,z) = v(t,x) + f(¢), so that v(¢,0) = 0, but we cannot stop here because the
equation is still on the half-line, whereas we only know bounded intervals or the whole line. In other words,
we have to extend the function v to the whole line while ensuring v(¢,0) = 0. An odd extension, also
known under a fancier name the method of reflection, does the trick:

~Ju(t,z) = f(t), x>0
ot @) = {—u(t, —z)+ f(t), x=<D0.

Then, after some extra work, we get an inhomogeneous wave equation for v:

(6)

Vg = gy — 1" (t)sen(z),

where
1, z >0
sgn(x) =¢0, x=0
-1, =z <0.
Then (5) leads to
t—2% t
Vita) = 4/ =8 o <e
0 x > ct.

Example 3.
Up = QUgg, © >0, t > 0; u(t,0) = f(t).
This time (6) leads to
v = avgy — f'(t)segn(z)
and then (4) leads to
T

t
2
t, — —xz*/(4a(t—s)) ds.
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