Basic Inequalities in Probability¹

Standard Notations: $\mu_X = \mathbb{E}X$ (expected value), $\sigma_X^2 = \mathbb{E}(X - \mu_X)^2$ (variance).

FUNDAMENTAL INEQUALITIES.

(1) RE-ARRANGEMENT: for every ream numbers $a_1 \le a_2 \le \cdots \le a_n$ and $b_1 \le b_2 \le \cdots \le b_n$, and every permutation τ of the set $\{1, 2, \ldots, n\}$,

$$a_1b_n + a_2b_{n-1} + \ldots + a_nb_1 \le a_1b_{\tau(1)} + a_2b_{\tau(2)} + \ldots + a_nb_{\tau(n)} \le a_1b_1 + a_2b_2 + \ldots + a_nb_n$$

Proof: induction can work.

Example: if x, y, z > 0, then $\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} \ge \frac{3}{2}$. Indeed, with no loss of generality, assume that $x \le y \le z$, so that $y + z \ge x + z \ge x + y$ and $1/(y + z) \le 1/(x + z) \le 1/(x + y)$. Now take $a_1 = 1/(y + z)$, $a_2 = 1/(x + z)$, $a_3 = 1/(x + y)$, $b_1 = x$, $b_2 = y$, $b_3 = z$, and note that $3 = a_1(b_2 + b_3) + a_2(b_1 + b_3) + a_3(b_1 + b_2) \le 2(a_1b_1 + a_2b_2 + a_3b_3)$.

(2) Power mean: If $a_1 > 0, a_2 > 0, ..., a_n > 0$, and

$$M_{p} = \begin{cases} \left(\frac{1}{n} \sum_{k=1}^{n} a_{k}^{p}\right)^{1/p}, & p \neq 0, \pm \infty, \\ M_{0} = (a_{1}a_{2} \cdots a_{n})^{1/n}, & p = 0, \\ M_{+\infty} = \max(a_{1}, \dots, a_{n}), & p = +\infty, \\ M_{-\infty} = \min(a_{1}, \dots, a_{n}), & p = -\infty, \end{cases}$$

then

$$\lim_{p \to 0} M_p = M_0, \ \lim_{p \to -\infty} M_p = M_{-\infty}, \ \lim_{p \to +\infty} M_p = M_{+\infty},$$

and the function $p \to M_p$ is strictly increasing unless $a_1 = a_2 = \ldots = a_n$.

Proof: induction can work.

Special names: M_1 is arithmetic mean (AG), M_0 is geometric mean (GM), M_{-1} is harmonic mean (HM). The (famous) AG/GM/HM inequality, $M_1 \ge M_0 \ge M_{-1}$, is a particular case of the power mean inequality.

CONCENTRATION INEQUALITIES.

(1) Markov [1880]: if Y > 0, then

$$\mathbb{P}(Y \ge a) \le \frac{\mathbb{E}Y}{a}$$
.

Proof. $\mathbb{E}Y \ge \mathbb{E}Y I_{Y \ge a} \ge a \mathbb{E}I_{Y \ge 0} = a \mathbb{P}(Y \ge a).$

(2) CHEBYSHEV [1865]: with $\mu_X = \mathbb{E}X$, $\sigma_X^2 = \mathbb{E}(X - \mu_X)^2$,

$$\mathbb{P}(|X - \mu_X| \ge a) \le \frac{\sigma_X^2}{a^2}.$$

Proof. Apply Markov with $Y = (X - \mu_X)^2$.

VARIATIONS.

• Standartized:

$$\mathbb{P}(|X - \mu_X| \ge k\sigma_X) \le \frac{1}{k^2}.$$

• Cantelli [1928]:

$$\mathbb{P}(X - \mu_X \ge a) \le \frac{\sigma_X^2}{\sigma_X^2 + a^2}.$$

Proof. For t > 0, by Markov, $\mathbb{P}(X - \mu_X + t > a + t) = \mathbb{P}((X - \mu_X + t)^2 > (a + t)^2) \le (\sigma_X^2 + t^2)/(a + t)^2$. Direct computations show that the right hand side is minimized by taking $t = \sigma_X^2/a$.

• Vysochanskij-Petunin [1980]: if X is unimodal, then

$$\mathbb{P}(|X - \mu_X| > k\sigma_X) \le \frac{4}{9k^2}.$$

¹Sergey Lototsky, USC

(3) CHERNOFF [1955]: If $M_X(t) = \mathbb{E}e^{tX}$ exists for all t > 0, and a > 0, then

$$\mathbb{P}(X \ge a) \le e^{\ln M_X(t) - at}$$

with subsequent minimization of the right-hand side with respect to t > 0.

Proof. Use Markov with $Y = e^{tX}$.

Example. If X is standard normal, then $M_X(t) = e^{t^2/2}$, so that $(t^2/2) - at \ge -a^2/2$, with the lower bound achieved for t = a/2, and therefore $\mathbb{P}(X \ge a) \le e^{-a^2/2}$.

(4) PALEY-ZYGMUND [1932]: if Y > 0 and $0 < \theta < 1$, then

$$\mathbb{P}(Y > \theta \mu_Y) \ge (1 - \theta)^2 \frac{\mu_Y^2}{\sigma_Y^2 + \mu_Y^2}.$$

Proof. Keeping in mind that $\mathbb{E}Y^2 = \sigma_Y^2 + \mu_Y^2$, $\mu_Y = \mathbb{E}YI_{Y \leq \theta \mu_Y} + \mathbb{E}YI_{Y > \theta \mu_Y}$. Then $\mathbb{E}YI_{Y < \theta \mu_Y} \leq \theta \mu_Y$ (obviously), and $\mathbb{E}YI_{Y > \theta \mu_Y} \leq \sqrt{\mathbb{E}Y^2}\sqrt{\mathbb{P}(Y > \theta \mu_Y)}$ (Cauchy-Schwarz; see below).

MOMENT INEQUALITIES.

(1) JENSEN [1905]: If q = q(x), $x \in \mathbb{R}$, is convex, then

$$\mathbb{E}g(X) \ge g(\mathbb{E}X)$$
 (e.g. $\mathbb{E}e^X \ge e^{\mu_X}$.)

If f = f(x) is concave, then

$$\mathbb{E}f(X) \le f(\mathbb{E}X)$$
 (e.g. $X > 0 \implies \mathbb{E} \ln X \le \ln \mu_x$.)

Proof: g convex \Leftrightarrow for every $x_0 \in \mathbb{R}$ there is a number $C \in \mathbb{R}$ such that $g(x) \geq g(x_0) + C(x - x_0)$; if g' exists, then $C = g'(x_0)$ [the graph of g is above the tangent line at x_0]. Now put $x = X, x_0 = \mu_X$, and take expected value on both sides.

(2) Lyapunov [1900]: if 0 , then

$$\left(\mathbb{E}|X|^p\right)^{1/p} \le \left(\mathbb{E}|X|^r\right)^{1/r}.$$

Proof: Use Jensen with $g(x) = |x|^{r/p}$ and $|X|^p$ instead of X.

(3) HÖLDER [1885]: if p > 1, q > 1, and (1/p) + (1/q) = 1, then

$$\mathbb{E}|XY| \le \left(\mathbb{E}|X|^p\right)^{1/p} \left(\mathbb{E}|Y|^q\right)^{1/q}.$$

The inequality is strict unless X = cY for some non-random number c.

Proof. Using concavity of the log function, argue that $ab \leq (a^p/p) + (b^q/q), a, b > 0$. Then set $a = |X|/(\mathbb{E}|X|^p)^{1/p}$, $b = |Y|/(\mathbb{E}|Y|^q)^{1/q}$, and take expectation on both sides. Note that the Hölder inequality is trivial if $\mathbb{E}|X|^p = 0$ and/or $\mathbb{E}|Y|^q = 0$.

(4) CAUCHY-BUNYAKOVSKY-SCHWARZ [$1820 \rightarrow 1855 \rightarrow 1885$]:

$$\mathbb{E}|XY| \le \sqrt{\mathbb{E}X^2}\sqrt{\mathbb{E}Y^2}.$$

Proof: take p = q = 2.

(5) Minkowski [1900]: if $p \ge 1$, then

$$\left(\mathbb{E}|X+Y|^p\right)^{1/p} \le \left(\mathbb{E}|X|^p\right)^{1/p} + \left(\mathbb{E}|Y|^p\right)^{1/p}$$

(that is, the functional $X \mapsto (\mathbb{E}|X|^p)^{1/p}$ satisfies the *triangle inequality* and thus defines a *norm* on the space of random variables with finite p-th moment.)

Proof. p=1 is obvious. For p>1, take q=p/(p-1) [so that (1/p)+(1/q)=1], note that $|X+Y|^p=|X+Y|\cdot |X+Y|^{p-1}\leq |X|\cdot |X+Y|^{p-1}+|Y|\cdot |X+Y|^{p-1}$, and then, by Hölder, $\mathbb{E}\big(|X|\cdot |X+Y|^{p-1}\big)\leq \big(\mathbb{E}|X|^p\big)^{1/p}\big(\mathbb{E}|X+Y|^p\big)^{1/q}$, $\mathbb{E}\big(|Y|\cdot |X+Y|^{p-1}\big)\leq \big(\mathbb{E}|Y|^p\big)^{1/p}\big(\mathbb{E}|X+Y|^p\big)^{1/q}$. It remains to combine the inequalities: $\mathbb{E}|X+Y|^p\leq \Big(\big(\mathbb{E}|X|^p\big)^{1/p}+\big(\mathbb{E}|Y|^p\big)^{1/p}\Big)\Big(\mathbb{E}|X+Y|^p\big)^{1/q}$ and then simplify, keeping in mind that 1-(1/q)=1/p.

THE PEOPLE.

- A.-L. Cauchy (1789–1857), French.
- P. L. Chebyshev (1821–1894), Russian.
- A. A. Markov (1856–1922), Russian.
- J. L. W. V. Jensen (1859–1925), Danish.
- F. P. Cantelli (1875–1966), Italian.
- R. E. A. C. Paley (1907–1933), English.
- Y. I. Petunin (1937–2011), Soviet.
- V. Ya. Bunyakovsky (1804–1889), Russian.
- K. H. A. Schwarz (1843–1921), German.
- A. M. Lyapunov (1857–1918), Russian.
- H. Minkowski (1864–1909), German.
- A. Zygmund (1900-1992), Polish-American.
- H. Chernoff (b. 1923), American.