MATH 445

Implicit scheme for the wave equation

Consider the one-dimensional wave equation

 $u_{tt}(x,t) = c^2 u_{xx}(x,t); 0 < x < L, \ 0 < t \le T; u(0,t) = u(L,t) = 0; \ u(x,0) = f(x), \ u_t(x,0) = g(x).$ Denote by $\Delta t = \tau$ the step size in time, and by $\Delta x = h$, in space; set $m^2 = \tau^2 c^2 / h^2, \ x_i = (i-1)h, \ i = 1, \dots, M+1; \ t_j = (j-1)\tau, \ j = 1, \dots, N+1.$ Note that $L = Mh = x_{M+1}, T = N\tau = t_{N+1}.$ Write $u_{i,j}$ for the approximation of $u(x_i, t_j)$,

We approximate $u_{tt}(x_i, t_j)$ by the central difference at x_i :

$$u_{tt}(x_i, t_j) \approx \frac{1}{\tau^2} \left(u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \right)$$

and $u_{xx}(i\Delta x, j\Delta t)$, by the average of the corresponding central differences at t_{j+1} and t_{j-1} :

$$u_{xx}(i\Delta x, j\Delta t) \approx \frac{1}{2} \left(\frac{1}{h^2} \left(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} \right) + \frac{1}{h^2} \left(u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1} \right) \right)$$

The result is

$$u_{i,j+1} - 2u_{i,j} + u_{i,j-1} = \frac{1}{2}m^2 \left((u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}) + (u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1}) \right)$$

or

$$-m^{2}u_{i+1,j+1} + 2(1+m^{2})u_{i,j+1} - m^{2}u_{i-1,j+1} = 4u_{i,j} + m^{2}u_{i+1,j-1} - 2(1+m^{2})u_{i,j-1} + m^{2}u_{i-1,j-1}.$$
 (1)

With zero boundary conditions, you get $u_{1,j} = u_{M+1,j} = 0$. For i = 2, ..., M, use the initial conditions to get $u_{i,1} = u(x_i, 0) = f((i-1)h), u_{i,2} \approx u_{i,1} + \tau g((i-1)h) + \frac{\tau^2}{2} u_{tt}(x_i, 0)$; from the equation, $u_{tt}(x_i, 0) = c^2 u_{xx}(x_i, 0) = c^2 f''(x_i) \approx c^2 (f(ih) - 2f((i-1)h) + f((i-2)h))/h^2$.

Then, for each j+1 = 3, ..., N, (1) is a linear system for the unknown vector $(u_{2,j+1}, ..., u_{M,j+1})$, and all you need is to solve this system. The matrix A of this system is of size $(M-1) \times (M-1)$, with $2(1+m^2)$ on the main diagonal, $-m^2$ just above and below the main diagonal, and 0 elsewhere. If you write U(j) for the vector-column $(u_{2,j}, ..., u_{M-1,j})$, then the system to solve is AU(j+1) = 4U(j) - AU(j-1).