62

HEAT FLOW IN A SEMI-INFINITE ROD

In Chapter 57 we solved the problem of heat flow in a semi-infinite rod initially
at a uniform temperature 6, whose end is held at a fixed temperature 0. Less
picturesquely but more precisely we proved the following lemma

Lemma 62.1. Let 6,eR and

b °° (y—w)? (y+w)?
O(y’t)_Z\/(nKt) L {e"p(_ 4Kt )_ex"(' 4Kt )}dw

forall y >0, t>0. Then 0:[0, ) x (0,00)— R is an infinitely differentiable function
with

(i) (06/0t)(y,t) = K(0%6/0y*)(y,1),
(i) 6(y,t)—>0, as t >0+ for all y>0,
(i) 6(0,t)=0 for all t > 0.

Proof. This is Lemma 57.1. |

By adding a constant we see that a solution to the problem in which the rod
is initially at a uniform temperature 0 and the end is held at temperature 0, is

_ 0, [~ (y—wy? (v +w)?
=03 |, (oo () ool )

In this chapter we shall attack the more general problem in which the rod is
initially at a uniform temperature 0 and the end is held at a varying temperature
S (). More explicitly we shall try to solve the equations

(i) (96/0t)(y,t) = K(0%6/0y*)(y,t)[y,t > 0],
(i) 6(y,t)—> 6, as t—0 + for y >0,
(iil) O(y,t)—>f(t) as y—>0+ for t > 0.

The discussion that follows is heuristic, though there is only one major gap in the
reasoning. (I shall point this gap out when we come to it.)
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Write Hy(t) =0 for t < s, Hy(t) =1 for s <t. We have solved the problem above
for f(t)=0,H,(t) and this can be made the basis for a tentative solution when
f(@t)=AHt)[s > 0]. For, if we set

O,(y,t)=0 for t<s,

_ 1 ° (y—w)’
Oy 1) =1- 2/(nK(t - s)) L {exp( - m>

2
—exp(—a(;}(—(t%)}dw fort>s

then, certainly, 10, satisfies conditions (i) and (iii) (with f= AH,) except possibly
when ¢t =s. (In fact it also satisfies them when ¢ =s but since the argument is
heuristic, we shall not pause to verify this.)

The heat equation is linear and so, in particular, if

0<S(1)<S(2)<"'<S(n) and 0= Z '{]98(]),
j=1

(i) (06/01t)(y,t) = K(8%0/0y*)(y,t) for y >0, t >0, t #s(1),...,s(n),
(i) 6(3,)=0 for 0 <t < s(1),
(il) O(y,t)>X 5 4;as y—>0+ for stk) <t <s(k+1),

O(y,t)—>}=14; as y—0+ for s(n) <t.
Ignoring the (not very difficult) convergence problems involved, we may suspect

that for reasonable choices of a sequence 0 < s(1) < 5(2) < -+ and 4;eC the infinite
sum 6 =32, 4,0, will also satisfy

(i) (06/0t)(y,t) = K(8%*0/0y*)(y,t) for y > 0,t > 0,t # s(j),
(i) 0(y,t)=0for 0 <t <s(1),
(i) O(y,t)—>X%-,2;as y—>0+ for s(k) <t <s(k +1).
If we now take a well behaved function f and some small § >0 then, putting
s(j)=jo, 4, =f(0) and A;=f((j + 1)6) — f(jJ), we conjecture that if

() $s(00)= 3. (U + DO~ (GO)u(0.1)
then J
() @s/00(3,0) = K(2265/09) for y >0, > 0,1 (),

(i) Po(y,t)=0 for 0 <t <o,
(i) Pgl(y,£)—f(j) as y—0+ for jo <t < (j+ 1)0.

We now let § »0, and it is here that there is the widest gap in our argument.
With luck we expect that

sy = 3, LU =S g 3,06 - f " P90, 0)ds = $(n.1), say
j= 0
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and that

(@) (9¢/00)(y,t) = K(92¢/dy*)(y,t) for y>0,¢>0,
(i) ¢(y,t)>0ast—-0+ for y>0,
(ii)) ¢(y,t)—>f(t) as y—>0+ for t > 0.

To get an expression for ¢ involving f rather that f’ we integrate by parts to
obtain

0= | 7000 =L90.0:025 - [ 16 20,000 Jas

00 a t
= - jo f(S) (b;es(ya t))ds = JVO f(S) (% Bs(y’ t)) dS,

since 0,(y,t) =0 for s > t.
The reader might like to pause to consider what we have done so far, but a

further simplification is possible. Writing

1 0 (x — w)?
l//o(x,t)—m;jo exp(—- 1K )dw,

gs(yat) = eo(J’at_ S) =1- ‘//o(y’t - S) + ‘//0(_ y,t—s),

we see that

and so, by direct computation, or an appeal to Lemma 55.7 (ii), we have

06,
Os

(0, 8) = — D30o(y,t —5) = DYo(y,t —5) — Datho(— y,t — 5)

It ZR— -y \_ y exp| — (—y?
4n*K3(t — 5)3/? 4K(t—s)] 4AntKi(t—s)*? 4K(t—s)

—-y -y
= for t > s.
2Kt —5) " exP<4K(t — s)) ort=s

In this way we have arrived at a putative solution

[ y Yy
()= Lf ) KA =" CXp<—4K(t—S)>dS

to our problem. It remains to check our guess.

Theorem 62.2. Suppose that f:(0,00)— C is continuous and bounded. Then if we
define ¢:(0,00) x (0, 00)— C by

t)= t ad X d
¢(xa - of(s)2n*K*(t—s)3/2 exp —W_—S) S,

if follows that ¢ is an infinitely differentiable function on (0, o) x (0, c0) with
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(i) (0¢/0t)(x,t) = K(3*¢/dx*)(x, ) for x, t >0,
(i) ¢(x,t)—=0ast—->0+ for x>0,
(iti) @(x,t)—>f(t) as x>0+ for t > 0.

Proof. The prooffollows the same pattern as Theorem 55.4. It is not very interesting
and I suggest that the reader just skims through it.
Step 1. (We show that we can differentiate under the integral sign.) Set

X x*
G(s,x, 1) =f(s)2n%K(t EETE exp( - m>

if t>5>0, G(s,x,t) = 0 otherwise. We claim that G:R x R* x R* — C is infinitely
differentiable in x and ¢. This the reader will readily allow except possibly when
t=s. To deal with the case t =s we observe that the same proof as in Example
4.2 shows that, if

gu)=u"3%exp(—1/u) foru>0,
gw)=0 for u <0,

then g is infinitely differentiable everywhere including 0.
Since G(s,x,t) =0 for s¢[0,¢], it follows that D4 D%G(s,x,t) = 0 for s¢[0,t] so
that D{D4G( ,x,t)eL' nC and, if te[T,, T, ],

f |D4D4G(s,x,t)|ds=0 for R>max(|T,l,|T,|).
Isl> R

Thus using the appropriate modification to Theorem 53.4 repeatedly we see that
¢ is infinitely differentiable with

ol o ©
P —P(x, 1) = j D4 D4 G(s, x, t)ds.

Step 2. If we show that  D,G(x,s,t) = KD2G(x,s,t),
it will follow from Step 1 that ¢ satisfies the heat equation. We can verify this
directly but it is simpler to observe that writing

1 x?
EI/J(ZKI)(X) = WCXP ( - 4_Kt>’

0
we have G(x,s,t) = f(s)g;EW(ZK(,_s))(x) for t>s>0.

But we know that E, ,,(x) satisfies the heat equation and so

9 0 o 0 0 0
Ere Eqj2kn(X) = ot Eyyokn(X)=K x gciEl/J(zxt)(x)
0 0

K2
0x? 0x

E, /J(ZK:)(X)

and the required result now follows.
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Step 3. Let

1 1
P(u)=0 u<0,

(ie. let P(u)=2n"*g(2u)). Then P:R—R is continuous and has the following
properties

(i) P(u) =0 for all u,
(i) w(P(u))—0 as |u| - oo,

© 1 | 1 1 0 v?
(iii) J_wP(u)du=WL u%exp(—ﬂ>du=(2n)% L —2exp(—3>dv

making the substitution v? = 1/u and remembering (for example from Lemma
48.10) that [* _exp(— t?/2)dt =(2n)*.

Writing 7(t) = f(t) for t >0, f(t) =0 for t <0 we see that with the notation of
Theorem 51.5 we have

d(x,t) = f f(S)sz/xZ(t —$)ds = Jw ](S)sz/ﬂ(t —s)ds =]*P2K/x2(t)
0 .
—-f)=f(t) asx—0+forall t>0.

All that remains is to verify that ¢(x,t)—0 as t >0+ for all x > 0. But
0 t
¢(x,1) =7*P2K/x2(t) = j fe— S)Pyk x2(s)ds = f f(t = 5)P g x2(5)ds,

SO |p(x,t)| < sup|f(u If Pyga(x)ds -0 ast—0+,

ueT

and we are done. |

Suppose that we change the temperature at the end of the rod for a short time
and then return it to its initial value. How will the resulting ‘heat pulse’ travel
down the rod? Ignoring as usual the problem of uniqueness, we shall consider the
question in the following form.

Problem. Suppose f:(0, 00)— R is a continuous function with f (t) = 0 for t > a. What
can we say about the behaviour of ¢(x,t)?

We can make two remarks at once.

(1) If f(u) >0 for all 0 <u < a then
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t
D(x,t) = j f()Psxea(t —s)ds >0 for all £ >0, x>0,
0

i.e. there is an instantaneous effect at all points.
(2) However, if Kt « x? (i.e. if Kt is small compared with x2), then

2K1/x2
|@(x,t)| < sup| f(u)] j P gx2(s)ds = sup| f () | P(v)dv

ueR ueR

< sup|f(u)|sup|P(v)|2Kt/x? « 1,
ueR veR
so the effect is negligible at distances x which are large compared with /(Kz).
If t/a is of the order of 1 (or less) then the behaviour of ¢(x,t) depends on
the precise behaviour of f. But if £ > a then

o(x,t) = f S ()P gx2(t — s)ds _I S(S)P2y)x2(t — s)ds ~f S()Pkx2(t) ds

(since P,y .2t —s)= X ex ( X )
2KpE W Ke—s)F T\ K(-9)

2
z—f——Iexp<——I)f<—t—> for all 0 <s < a).

Hence o(x, )~ f ’ f(5)ds Py xa(t).
4]

Thus we have the following remark.
(3) If t > a the ‘shape’ of the pulse ¢(x, ) is independent of the ‘shape’ of f and its
magnitude depends only on j; f(s)ds (and, of course, x and ).
Using Remark (2) we obtain the following version of (3).
(4) Ifx2 » Kathen the shape of the pulse ¢(x, ) depends only on x and its magnitude
depends only on {, f(s)ds and x.

Thus the three pulses in Figure 62.1 produce much the same pulse ¢(x, )~
AP,y () (with A =[] f(s)ds) for large x.

To describe the pulse shape in more detail we make some preliminary
observations.

Lemma 62.3. (i) Let

P(u)=(2n) *u"texp(—1/2u) [u>0].

Then P increases from 0 to M =(2n) *3%exp(—3/2) as u runs from 0 to
T, = 1/3 and then decreases to 0 as u runs from Ty to oo. In particular if 0 < § < 1 there
exist unique T,(8) and T,(0) with 0 < T,(8)<1/3 < T,() and P(u)= oM for
ue[Ty(6), T,(8)], P(u) < OM otherwise.
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Fig. 62.1. Possible initial pulses.
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Fig. 62.2. Pulse shapes at various distances.

(ii) Let Q(t) = AP, 2(t)[t > 0] where A, K, x>0. Then with the notation of (i),
Q increases from 0 to 2K /x*)M A as u runs from 0 to (x*/2K)T, and then decreases
to 0 as u runs to co0. If 0 <6 <1 then

O(t) = 2KSMA/x? for te[(x%/2K)T,(),(x%/2K)T,(5)], Q(t) < SM A/x* otherwise.
Proof. (i) Observe that

1 31 1\ 1 1-3u 1
P — _— )= _ PR
)= ( 2 2uf) exP( 2u> 2nF 2 exP( 2u>'

(ii) Since Q(t) = (42K /x*)P(2Kt/x?) this follows directly from (i). [ |

Rewriting Lemma 62.3 in vaguer terms we obtain our concluding remark.

(5) If x*> Ka then the pulse rises for a time proportional to x? (and inversely
proportional to K) to a maximum which is inversely proportional to x2 (and
proportional to K) and then declines to 0 (Figure 62.2). The length of time during
which the pulse is greater than a given fraction of its maximum is proportional to
x? (and inversely proportional to K).



