
About Harmonic Numbers

Definition. The n-th harmonic number Hn is
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Basic bounds using integral comparison:

ln(n+ 1) < Hn < 1 + lnn, n ≥ 2; lim
n→∞

(Hn − lnn) = γ = 0.577 . . . ;

the number γ is called Euler or Euler-Mascheroni constant.
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Some problems where answers involve Hn.

A worm on a rubber band:1 a worm moves at a constant speed 1 centimeter per minute starting at
one end of a rubber band that is initially 1 meter long and instantaneously stretches by 1 meter at the end
of every minute; when will the worm get to the other end?

The percentage of the band covered by worm at minute n just before the next stretch of the band is ex-
actly Hn, so the number N of minutes to get to the end is determined from the relation HN = 100, that
is, N > e100 > 1043, that is, getting to the other end will take more than 1037 years.

Record values: Given a sequence X1, X2, . . . of iid continuous random variables, define
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compute ENn.
Equivalent formulations:

• n trains leave the station, moving in the same direction, on the same track, all with different speeds;
Nn is the number of groups formed.

• hold n pieces of wire in your fist; somebody else ties the ends pairwise on top and bottom at
random; Nn is the number of closed loops you get.

If mn = ENn, then
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that is, ENn = Hn.

Testing for destruction: have n objects with strengths X1, . . . , Xn that are all different; how to
determine min(X1, . . . , Xn) without breaking all the objects?

A possible procedure is as follows: break the first object, record the breaking strength Y1; then load the
second object to Y1; if the object breaks before that, record the breaking strength Y2; if not, put the object
aside and move to the next one; at step k, load k-th object to the minimal breaking strength recorded so
far; the expected number of broken objects will be Hn.

Crossing the desert:2 how to cover a (very long desert) given an unlimited supply of cars and fuel,
without abandoning any of the cars?

1Attributed to Denys Wilquin, 1972
2Attributed to N. J. Fine, 1947
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Assuming each car carries one unit of fuel to cover one unit of distance, with no extra storage of fuel, n
cars can ensure that the first car covers the distance of
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Hn−1 → ∞, n → ∞.

For example, with three cars, (a) all travel the distance 1/5; (b) car 3 gives 1/5 of its remaining fuel to each
of the other two and waits [cars 1 and 2 now have full tanks, car 3 has 2/5]; (c) the other two cars travel
the additional distance 1/3; (d) car 2 gives 1/3 of the fuel to car 1 [which is full again and can travel the
distance 1]; (e) car 2 turns around and goes the distance 1/3 back to car 3; (f) now car 2 is empty, but car 3
has 2/5 of tank full, enough for the two of them to cover the remaining distance 1/5 and get back to the start.

Coupon collecting problem: n different items are placed at random in infinitely many (cereal) boxes,
one item per box; Nn is the number of boxes necessary to collect all n items; compute ENn.

Equivalent formulations:

• Nn is the number of rolls of a fair n-sided die to have all n sides appear;
• Nn − 1 is the number of moves in the “top-to-random” shuffle of n cards (take the top card and
put it in the stack uniformly at random) to get the bottom card on top (equivalently, Nn is the
number of moves in the “top-to-random” shuffle so that all n card have been moved at least once);

• balls are dropped uniformly at random, one-by-one, into n boxes, then Nn is the minimal number
of balls to have no empty boxes.

We have Nn =
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X1, . . . , Xn are independent (because there are infinitely many cereal boxes). As a result,
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We can further compute
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Moreover, using the “balls-in-boxes” formulation, let Ym,n be the number of empty boxes (out of n), when
m balls have been dropped. Then, using the indicator method, EYm,n = n

(
1− (1/n)

)m
. As a result,

P
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= P(Yn lnn+xn,n = 0) ≈ exp(−EYn lnn+xn,n) → e−e−x

, n → ∞.

where the equality assumes that n lnn+ xn is an integer [so that n lnn+ xn balls filled all n boxes, with
no boxes left empty], and the approximation is an application of the “Poisson paradigm” to claim that, for
large n and m, the distribution of Ym,n is (approximately) Poisson. Note that the function F (x) = e−e−x

,
x ∈ (−∞,+∞) is indeed a cumulative distribution function and is known as the Gumbel extreme value

distribution.

A reference. Julian Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, 2003.

3Geometric distribution G1(p) is the number of Bernoulli trials to get the first success when the probability of success in
one trial is p; it has expected value 1/p and variance (1− p)/p2.


