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BEHAVIOUR AT POINTS
OF DISCONTINUITY 11

We have seen in Chapter 8 how Kelvin invented machines which could compute
periodic functions from their Fourier series and conversely obtain the Fourier
series of a given periodic function. One such machine was constructed by Michelson
to work to a higher accuracy and to involve many more terms than previous
models. (Michelson’s ability to build and operate equipment to new standards of
accuracy was legendary. Of his interferometer which he invented and used in the
Michelson Morley experiments it was said that it was a remarkable instrument —
provided you had Michelson to operate it. His experiments to measure the diameter
of the nearest stars using an interferometer were not reproduced for 30 years.)

Michelson tested his machine by feeding in the first 80 Fourier coefficients of
the sawtooth function h defined in Chapter 16. To his surprise the machine did
not produce an exact sawtooth but instead added two little blips on either side
of the discontinuity as shown in Figure 17.1. Even after making every effort to
remove any mechanical defects which could account for them, the blips still
remained. Finally hand calculation confirmed the existence of blips in S,(h, ) close
to the discontinuity. The effect of increasing n was to move the blips closer and
closer to the discontinuity but they remained and their height (in absolute value)
remained 17 or 18% above the correct absolute value. How could this be reconciled
with Theorem 16.4 (or indeed Lemma 16.1)?

Gibbs in two letters to Nature (the second a correction of the first) clarified and
resolved the issue. The difficulty is due to a confusion between ‘the limit of the
graphs and ... the graph of the limit of the sum. A misunderstanding on this point
is a natural consequence of the usage which allows us to omit the word limit in
certain connections as when we speak of the sum of an infinite series.’

In other words S,(h,t)— h(t) pointwise (after all the blips move towards the
discontinuity), but pointwise convergence of f, to f does not imply that the graph
of f, starts to look like f for large n. The reader has already met more extreme
examples of this when the notion of uniform convergence of a function g, to g
(which does imply that the graph of g, starts to look like g) was introduced. For
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Fig. 17.1. A partial Fourier sum for the sawtooth function.

example, consider the ‘witch’s hats’

foiX)=n*(1—n|x—n"1) for0<x<2n?,
Jax)=0 otherwise.

Then f,,— 0 pointwise but the graph of f,, does not resemble 0. (see Figure 17.2).

In conclusion we may repeat once more that delicate and sophisticated results
like Theorem 16.4 require much more care in use and interpretation than crude
and unsubtle results like Theorem 9.1, and that the reader must always be careful
to understand the limitations of any particular mode of convergence under
discussion.

A full investigation of the ‘Gibbs phenomenon’ is not very difficult but neither
is it very interesting. We shall therefore limit ourselves to demonstrating its reality.

Theorem 17.1. If h is the sawtooth function defined by h(x) = x[x # =], h(n) = O then
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Fig. 17.2. The ‘witch’s hat’ counter example.
S,(h,mt — m/n)—> Am,
S,(h, —t +n/n)—> — An asn— oo,
where A =2/n | (sin x/x)dx > 1.17.
Proof. At the beginning of Chapter 16 we saw that

Sa(h,x) = Zl (=1y* 1%sin rx

Thus Su(h,mt — m/n) = Zn: %Sin%=2 i E(—sm——) J Slnx

(using the standard results on the approximation of integrals by sums together
with the observation that sin x/x is defined, continuous and bounded on [0,x]).

Similarly,

Sp(h, — T+ 7/n)—> — ZJ"(sin x/x)dx,
0
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Fig. 17.3. The Gibbs phenomenon.

so all that remains to be done is to show that
2 (™si
2 j S0 > 117,
T)o X

This we do by direct numerical calculation. Since
sinx & (—1)yx*
X S Qr+1)

with the power series having infinite radius of convergence, we may integrate term

by term to get
"sinxdx__ 1 2 + AR A 4o
o x XTI SIS T :
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The series on the right is an oscillating decreasing series, so the error due to
truncation is less, in absolute value, than the first term neglected. In other words

2n2n+2

2 ("sinx noopi(—1y <
S@n+3)20Qn+2)0

7], x dx_z,;0(2r+1)2(2r)z

Taking n =4 and performing the calculations on a hand calculator we obtain
2 f X dx > 1.17,
TJo X

as required. [ ]

Suppose now we have a function f: T —C with f(r) = O(|r| ') which has only
a finite number of discontinuities, at x,, X,,...xy say, and suppose further that f
is continuous on the left and on the right at each of these. Then the reader will
easily verify (if she is interested) that we can write

JO=00+ %, dhtt—x) [ceT)

where 4;6C[1<j<n] and g: T—C is a continuous function with §(r)=O(r|™")
and so, by Theorem 15.3 (i), with S,(g, )—g uniformly on T. Thus the same
phenomenon which we described for h (of a blip overshooting by 8% to 9% of
the total jump) will occur at each of the discontinuities (see Figure 17.3).

The phenomenon described in this chapter is called the ‘Gibbs phenomenon’ but
could perhaps more fittingly be described as the ‘Gibbs—Wilbraham phenomenon’
since it had already been discovered and explained by an English mathematician
called Wilbraham 60 years before. However this first discovery must have appeared
as an isolated curiosity of no practical relevance and was soon forgotten.

During the early British development of radar it was decided to use the sawtooth
function h to give the x coordinate on the oscilloscopes. The engineers produced
h in the obvious way as a Fourier sum and the Gibbs—Wilbraham phenomenon
was rediscovered yet again.



