A general introduction

One unit of credit

1 unit is (at least) 45 hours of work per semester
"Traditional accounting" for one unit:

- 1 hour of lectures per week
- 2 hours of discussion sections per week
- 3 hours of lab work per week

Ramifications for USC's 15 -week semester:

- 1 unit is 3 hours of work per week
- 16 units $=48$ hours of work per week
- a 4-unit math class $=7$ hours of independent work per week

And this is the bare minimum!
Good news: one week is 168 hours; $168=48+60+60$.

An absolute grading scheme

$$
\begin{array}{ll}
\text { A } & 100-95 \\
\text { A- } & 94-90 \\
\text { B+ } & 89-87 \\
\text { B } & 86-83 \\
\text { B- } & 82-80 \\
\text { C+ } & 79-77 \\
\text { C } & 76-73 \\
\text { C- } & 72-70 \\
\text { D+ } & 69-67 \\
\text { D } & 66-63 \\
\text { D- } & 62-60 \\
\text { F } & 59 \text { and below }
\end{array}
$$

Think!

Quotation number 1:

Most people would rather die than think; in fact, many do so.
A variation on Bertrand Russell (1872-1970)

Quotation number 2:

Tänka fritt är stort men tänka rätt är store.

Do!

A quotation:

Education is what you get when you read the fine print. Experience is what you get when you do not.

Unknown, on investing.

A generalization:

Education is what you get when you $\langle\mathrm{DO}\rangle$. Experience is what you get when you \langle DO NOT \rangle.

Three other suggestions:

1. Ask questions [try two serious ones per week].

- At the lecture (right on the spot, before/after).
- During office hours.
- By e-mail

2. Keep your notes.
3. Have fun while learning the material.

The 7\%-38\%-55\% rule

Communication:

■ Verbal (words): 7\%
■ Vocal (tone of voice): 38%
■ Visual (body language): 55\%
Source: Albert Mehrabian (Professor of Psychology at UCLA, b. 1939) studies on communication in 1960's.

The fine print: This only applies to messages pertaining to feelings and attitudes.

Conclusion: For a (math) lecture, make it 100\% verbal (lecture words) and visual (blackboard and/or video).

Probability and Statistics

Subject Word

Motivation

Probability \quad Probus $($ Latin $)=$ honest
Gambling
Probabilis (Latin) $=$ provable

Statistics \quad Stare (Latin) $=$ stand
Agriculture
Statistik $($ German $)=$ political arithmetic

First department of statistics in the USA: 1933, lowa State University
World: 1911, University College London

As a math problem

In the background is a model with uncertain outcomes.
Probability is mathematical study of uncertainty: Given a model, describe the outcomes - a forward problem.

Statistics is collecting, organizing, analyzing, interpreting, and presenting data.
Applied Statistics: understanding whether the observed difference is due to chance or is caused by something else - all about facts (data). Theorem-free.

Mathematical Statistics: Given the outcomes (data), determine the underlying model - an inverse problem. Provides the tools to interpret the facts (process the data) and safeguards against wrong interpretations and conclusions. Proves theorems.

Numbers

$X_{1}, X_{2}, \ldots, X_{n}$
Sample mean

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

Sample median M_{n}

$$
\begin{aligned}
11,25,38,478,5000 & \mapsto M_{5}
\end{aligned}=38 ; 1 \text { (} 16,27,324,450,598,61111 \mapsto M_{6}=\frac{324+450}{2}=387 .
$$

Sample standard deviation

$$
s_{n}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}_{n}\right)^{2}}
$$

Random models

Tossing a coin, with outcomes $\mathrm{H}(\mathrm{EADS})$, T (AILS)
Rolling a Die, with outcomes $\{1,2,3,4,5,6\}$

Drawing Cards

- 52 cards;
- 2 colors: black, red;
- 4 suits: hearts (red), clubs (black), diamonds (red), spades (black);
- 13 ranks per suit: A(ce), 2,3,4,5,6,7,8,9,10, J(ack), Q(ueen), K(ing).

