A general introduction

1 unit is (at least) 45 hours of work per semester

- "Traditional accounting" for one unit:
- 1 hour of lectures per week
- 2 hours of discussion sections per week
- 3 hours of lab work per week
- Ramifications for USC's 15-week semester:
- 1 unit is 3 hours of work per week
- 16 units = 48 hours of work per week
- a 4-unit math class = 7 hours of *independent* work per week
- And this is the bare minimum!
- **Good news:** one week is 168 hours; 168=48+60+60.

An absolute grading scheme

100–95	
94–90	
89–87	
86–83	
82–80	
79–77	
76–73	
72–70	
69–67	
66–63	
62–60	
59 and	below
	100–95 94–90 89–87 86–83 82–80 79–77 76–73 72–70 69–67 66–63 62–60 59 and

Think!

Quotation number 1:

Most people would rather die than think; in fact, many do so.

A variation on *Bertrand Russell* (1872-1970)

Quotation number 2:

Tänka fritt är stort men tänka rätt är store.

Do!

A quotation:

Education is what you get when you read the fine print. Experience is what you get when you do not.

Unknown, on investing.

A generalization:

Education is what you get when you $\langle DO \rangle$. Experience is what you get when you $\langle DO NOT \rangle$.

Three other suggestions:

- 1. Ask questions [try two serious ones per week].
 - At the lecture (right on the spot, before/after).
 - During office hours.
 - By e-mail
- 2. Keep your notes.
- 3. Have fun while learning the material.

The 7%-38%-55% rule

COMMUNICATION:

- Verbal (words): 7%
- Vocal (tone of voice): 38%
- Visual (body language): 55%

Source: Albert Mehrabian (Professor of Psychology at UCLA, b. 1939) studies on communication in 1960's.

The fine print: This only applies to messages pertaining to feelings and attitudes.

Conclusion: For a (math) lecture, make it 100% verbal (lecture words) and visual (blackboard and/or video).

Probability and Statistics

Subject	Word	Motivation	
Probability	$Probus\;(Latin) = honest$	GAMBLING	
	$Probabilis\;(Latin) = provable$		
Statistics	Stare (Latin) = stand Statistik (German) = political arithmetic	Agriculture	ē
First departn World: 191	nent of statistics in the USA: 1933, Iowa 1, University College London	a State Universit	У

In the background is a model with uncertain outcomes.

Probability is mathematical study of uncertainty: Given a model, describe the outcomes — a *forward* problem.

Statistics is collecting, organizing, analyzing, interpreting, and presenting data. *Applied Statistics*: understanding whether the observed difference is

due to chance or is caused by something else — all about facts (data). Theorem-free.

Mathematical Statistics: Given the outcomes (data), determine the underlying model — an *inverse* problem. Provides the tools to interpret the facts (process the data) and safeguards against wrong interpretations and conclusions. Proves theorems.

Numbers

$$X_1, X_2, \ldots, X_n$$

Sample mean

$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{1}{n} \sum_{k=1}^n X_k$$

Sample median M_n $11, 25, 38, 478, 5000 \mapsto M_5 = 38;$ $16, 27, 324, 450, 598, 61111 \mapsto M_6 = \frac{324 + 450}{2} = 387.$

Sample standard deviation

$$s_n = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2}$$

Tossing a coin, with outcomes H(EADS), T(AILS)

Rolling a Die, with outcomes $\{1, 2, 3, 4, 5, 6\}$

Drawing Cards

- 52 cards;
- 2 *colors*: black, red;
- 4 *suits*: hearts (red), clubs (black), diamonds (red), spades (black);
- 13 ranks per suit: A(ce), 2,3,4,5,6,7,8,9,10, J(ack), Q(ueen), K(ing).