
Chapter 2

Real and complex Wigner matrices

2.1 Real Wigner matrices: traces, moments and combinatorics

Start with two independent families of independent and identically distributed (i.i.d.) zero mean, real-valued
random variables {Zi,j }1≤i<j and {Yi }1≤i, such that EZ2

1,2 = 1 and for all integers k ≥ 1,

rk := max(E|X1,2|k, E|Y1|k) < ∞. (2.1.1)

Consider the (symmetric) N ×N matrix XN with entries

XN (j, i) = XN (i, j) =

{
Zi,j/

√
N, if i < j

Yi/
√
N, if i = j

(2.1.2)

We call such a matrix a Wigner matrix, and if the random variables Zi,j and Yi are Gaussian, we use the
term Gaussian Wigner matrix. The case of Gaussian Wigner matrices in which EY 2

1 = 2 is of particular
importance, and for reasons that will become clearer in Chapter 3, such matrices (rescaled by

√
N) are

referred to as Gaussian orthogonal ensemble (GOE) matrices.

Let λN
i denote the (real) eigenvalues of XN , with λN

1 ≤ λN
2 ≤ · · · ≤ λN

N , and define the empirical distribution
of the eigenvalues as the (random) probability measure on R defined by

LN =
1

N

N∑
i=1

δλN
i
.

Define the semicircle distribution (or law) as the probability distribution σ(x) dx on R with density

σ(x) =
1

2π

√
4− x21|x|≤2. (2.1.3)

The following theorem can be considered the starting point of random matrix theory (RMT).

Theorem 2.1.1 (Wigner) For a Wigner matrix, the empirical measure LN converges weakly, in probability,
to the semicircle distribution.

In greater detail, Theorem 2.1.1 asserts that for any f ∈ Cb(R), and any ε > 0,

lim
N→∞

P (|〈LN , f〉 − 〈σ, f〉| > ε) = 0.

Remark 2.1.2 The assumption (2.1.1) that rk < ∞ for all k is not really needed. See Theorem 2.1.21 in
Section 2.1.5.
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2.1.1 The semicricle distribution, Catalan numbers, and Dyck paths

2.1.2 Proof #1 of Wigner’s Theorem 2.1.1

2.1.3 Proof of Lemma 2.1.6: words and graphs

2.1.4 Proof of Lemma 2.1.7: sentences and graphs

2.1.5 Some useful approximations

Lemma 2.1.19 (Hoffman-Wielandt) Let A, B be N × N symmetric matrices, with eigenvalues λA
1 ≤

λA
2 ≤ · · · ≤ λA

N and λB
1 ≤ λB

2 ≤ · · · ≤ λB
N . Then,

N∑
i=1

∣∣λA
i − λB

i

∣∣2 ≤ tr(A−B)2.

Remark 2.1.20 The statement and proof of Lemma 2.1.19 carry over to the case where A and B are both
Hermitian matrices.

Lemma 2.1.19 allows one to perform all sorts of truncations when proving convergence of empirical measures.
For example, let us prove the following variant of Wigner’s Theorem 2.1.1.

Theorem 2.1.21 Assume XN is as in (2.1.2), except that instead of (2.1.1), only r2 < ∞ is assumed. Then,
the conclusion of Theorem 2.1.1 still holds.
Proof. Fix a constant C and consider the symmetric matrix X̂N whose elements satisfy, for 1 ≤ i ≤ j ≤ N ,

X̂N (i, j) = XN (i, j)1√
N |XN (i,j)|≤C − E

(
XN (i, j)1√

N |XN (i,j)|≤C

)
.

Then, with λ̂N
i denoting the eigenvalues of X̂N , ordered, it follows from Lemma 2.1.19 that

1

N

N∑
i=1

∣∣∣λN
i − λ̂N

i

∣∣∣2 ≤ 1

N
tr
(
XN − X̂N

)2
.

But,

WN :=
1

N
tr
(
XN − X̂N

)2
≤ 1

N2

∑
i,j

[√
NXN (i, j)1√

N |XN (i,j)|≥C − E
(√

NXN (i, j)1√
N |XN (i,j)|≥C

)]2
.

Since r2 < ∞, and the involved random variables are identical in law to either Z1,2 or Y1, it follows that

E

[(√
NXN (i, j)

)2
1√

N |XN (i,j)|≥C

]
converge to 0 uniformly in N , i, j, when C converges to infinity. Hence,

one may choose for each ε a large enough C such that P (|WN | > ε) < ε. Further, let

Lip(R) =

{
f ∈ Cb(R) : sup

x
|f(x)| ≤ 1, sup

x 6=y

|f(x)− f(y)|
|x− y|

≤ 1

}
.

Then, on the event { |WN | < ε }, it holds that for f ∈ Lip(R),∣∣∣〈LN , f〉 − 〈L̂N , f〉
∣∣∣ ≤ 1

N

∑
i

∣∣∣λN
i − λ̂N

i

∣∣∣ ≤ √
ε,

where L̂N denotes the empirical measure of the eigenvalues of X̂N , and Jensen’s inequality was used in the
second inequality. This, together with the weak convergence in probability of L̂N toward the semicircle law
assured by Theorem 2.1.1, and the fact that weak convergence is equivalent to convergence with respect to
the Lipschitz bounded metric (Theorem C.8) complete the proof of Theorem 2.1.21.



2.1.6 Maximal eigenvalues and Füredi-Komlós enumeration

Theorem 2.1.22 (Maximal eigenvalue) Consider a Wigner matrix XN satisfying rk ≤ kCk for some
constant C and all positive integers k. Then, λN

N converges to 2 in probability.

2.1.7 Central limit theorems for moments

With XN a Wigner matrix and LN the associated empirical measure of its eigenvalues, set WN,k :=
N
[
〈LN , xk〉 − 〈LN , xk〉

]
. Let

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du

denote the Gaussian distribution. We set σ2
k as in (2.1.44) below, and prove the following.

Theorem 2.1.31 The law of the sequence of random variables WN,k/σk converges weakly to the standard
Gaussian distribution. More precisely,

lim
N→∞

P

(
WN,k

σk
≤ x

)
= Φ(x).

Most of the proof consists of a variance computation.

2.2 Complex Wigner matrices

In this section, we start with two independent familes of i.i.d. random variables {Zi,j }1≤i<j (complex-valued)

and {Yi }1≤i (real-valued), zero mean, such that EZ2
1,2 = 0, E|Z1,2|2 = 1 and, for all integers k ≥ 1,

rk := max
(
E|Z1,2|k, E|Y1|k

)
< ∞. (2.2.4)

Consider the (Hermitian) N ×N matrix XN with entries

X∗
N (j, i) = XN (i, j) =

{
Zi,j/

√
N if i < j,

Yi/
√
N if i = j.

(2.2.5)

We call such a matrix a Hermitian Wigner matrix, and if the random variables Zi,j and Yi are Gaussian, we
use the term Gaussian Hermitian Wigner matrix. The case of Gaussian Hermitian Wigner matrices in which
EY 2

1 = 1 is of particular importance, and for reasons that will become clearer in Chapter 3, such matrices
(rescaled by

√
N) are referred to as Gaussian unitary ensemble (GUE) matrices.

As before, let λN
i denote the (real) eigenvalues of XN , with λN

1 ≤ λN
2 ≤ · · · ≤ λN

N , and recall that the
empirical distribution of the eigenvalues is the probability measure on R defined by

LN =
1

N

N∑
i=1

δλN
i
.

The following is the analog of Theorem 2.1.1.

Theorem 2.2.1 (Wigner) For a Hermitian Wigner matrix, the empirical measure LN converges weakly,
in probability, to the semicircle distribution.

2.3 Concentration for functionals of random matrices and logarithmic Sobolev
inequalities

In this short section, we digress slightly and prove that certain functionals of random matrices have the
concentration property, namely, with high probability these functionals are close to their mean value. A more
complete treatment of concentration inequalities and their application to random matrices is postponed to
Section 4.4. The results of this section will be useful in Section 2.4, where they will play an important role
in the proof of Wigner’s theorem via the Stieltjes transform.



2.3.1 Smoothness properties of linear functions of the empirical measure

Let us recall that if X is a symmetric (Hermitian) matrix and f is a bounded measurable function, f(X) is
defined as the matrix with the same eigenvectors as X but with eigenvalues that are the image by f of those
of X, namely, if e is an eigenvector of X with eigenvalue λ, Xe = λe, f(X)e = f(λ)e. In terms of the spectral
decomposition X = UDU∗ with U orthogonal (unitary) and D diagonal real, one has f(X) = Uf(D)U∗

with f(D)ii = f(Dii). For M ∈ N, we denoted by 〈·, ·〉 the Euclidean scalar product on RM (or CM ).

Throughout this section, we denote the Lipschitz constant of a function G : RM → R by

|G|L := sup
x6=y∈RM

|G(x)−G(y)|
‖x− y‖2

,

and call G a Lipschitz function if |G|L < ∞. The following lemma is an immediate application of Lemma
2.1.19. In its statement, we identify C with R2.

Lemma 2.3.1 Let g : RN → R be Lipschitz with Lipschitz constant |g|L. Then, with X denoting the
Hermitian matrix with entries X(i, j), the map

{X(i, j) }1≤i≤j≤N 7→ g(λ1(X), . . . , λN (X))

is a Lipschitz function on RN2

with Lipschitz constant bounded by
√
2|g|L. In particular, if f is a Lipschitz

function on R,
{X(i, j) }1≤i≤j≤N 7→ tr(f(X))

is a Lipschitz function on RN(N+1) with Lipschitz constant bounded by
√
2N |f |L.

2.3.2 Concentration inequalities for independent variables satisfying logarithmic
Sobolev inequalities

To begin with, recall that a probability measure P on R is said to satisfy the logarithmic Sobolev inequality
(LSI) with constant c if, for any differentiable function f in L2(P ),∫

f2 log
f2∫
f2 dP

dP ≤ 2c

∫
|f ′|2 dP.

It is not hard to check, by induction, that if Pi satisfy the LSI with constant c and if P (M) = ⊗M
i=1Pi denotes

the product measure on RM , then P (M) satisfies the LSI with constant c.

The interest in the logarithmic Sobolev inequality, in the context of concentration inequalities, lies in the
following argument, that among other things, shows that LSI implies sub-Gaussian tails.

Lemma 2.3.3 (Herbst) Assume that P satisfies the LSI on RM with constant c. Let G be a Lipschitz
function on RM , with Lipschitz constant |G|L. Then, for all λ ∈ R,

EP

[
eλ(G−EP (G))

]
≤ ecλ

2|G|2L/2,

and so, for all δ > 0,

P (|G− EP (G)| ≥ δ) ≤ 2e−δ2/2c|G|2L .

Note that part of the statement in Lemma 2.3.3 is that EPG is finite.

2.3.3 Concentration for Wigner-type matrices

We consider in this section (symmetric) matrices XN with independent (and not necessarily identically
distributed) entries {XN (i, j) }1≤i≤j≤N . The following is an immediate corollary of Lemmas 2.3.1 and 2.3.3.

Theorem 2.3.5 Suppose that the laws of the independent entries {XN (i, j) }1≤i≤j≤N all satisfy the LSI
with constant c/N . Then, for any Lipschitz function f on R, for any δ > 0,

P (|tr(f(XN ))− E[tr(f(XN ))]| ≥ λN) ≤ 2e
− 1

4c|f|2L
N2δ2

.



Further, for any k ∈ { 1, . . . , N },

P (|f(λk(XN ))− Ef(λk(XN ))| ≥ λ) ≤ 2e
− 1

4c|f|2L
Nδ2

.

We note that under the assumptions of Theorem 2.3.5, EλN (XN ) is uniformly bounded.

2.4 Stieltjes transforms and recursions

We begin by recalling some classical results concerning the Stieltjes transfrom of a probability measure.

Definition 2.4.1 Let µ be a positive, finite measure on the real line. The Stieltjes transform of µ is the
function

Sµ(z) :=

∫
R

µ(dx)

x− z
, z ∈ C \ R.

Note that for z ∈ C \ R, both the real and imaginary parts of 1/(x − z) are continuous bounded functions
of x ∈ R and, further, |Sµ(z)| ≤ µ(R)/|Iz|. These crucial observations are used repeatedly in what follows.

Stieltjes transforms can be inverted. In particular, one has

Theorem 2.4.3 For any open interval I with neither endpoint on an atom of µ,

µ(I) = lim
ε→0

1

π

∫
I

Sµ(λ+ iε)− Sµ(λ− iε)

2i
dλ = lim

ε→0

1

π

∫
I

ISµ(λ+ iε) dλ.

Theorem 2.4.3 allows for the reconstruction of a measure from its Stieltjes transform. Further, one has the
following.

Theorem 2.4.4 Let µn ∈ M1(R) be a sequence of probability measures.

(a) If µn converges weakly to a probability measure µ, then Sµn
(z) converges to Sµ(z) for each z ∈ C \ R.

(b) If Sµn
(z) converges for each z ∈ C \ R to a limit S(z), then S(z) is the Stieltjes transform of a sub-

probability measure µ, and µn converges vaguely to µ.

(c) If the probability measures µn are random and, for each z ∈ C \ R, Sµn(z) converges in probability to a
deterministic limit S(z) that is the Stieltjes transform of a probability measure µ, then µn converges weakly
in probability to µ.

(We recall that µn converges weakly to µ if, for any continuous function f on R that decays to 0 at infinity,∫
f dµn →

∫
f dµ. Recall also that a positive measure µ on R is a sub-probability measure if it satisfies

µ(R) ≤ 1.)

For a matrix X, define SX(z) := (X − zI)−1. Taking A = X in the matrix inversion lemma (Lemma A.1),
one gets

SX(z) = z−1(XSX(z)− I), z ∈ C \ R.

Note that with LN denoting the empirical measure of the eigenvalues of XN ,

SLN
(z) =

1

N
trSXN

(z), SLN
(z) =

1

N
EtrSXN

(z).

Two proofs are given for Wigner’s theorem using Stieltjes transforms.

2.5 Joint distribution of eigenvalues in the GOE and the GUE

We are going to calculate the join distribution of eigenvalues of a random symmetric or Hermitian matrix
under a special type of probability law which displays a high degree of symmetry but still makes on-or-above-
diagonal entries independent so that the theory of Wigner matrices applies.



2.5.1 Definition and preliminary discussion of the GOE and the GUE

Let { ξi,j , ηi,j }∞i,j=1 be an i.i.d. family of real mean 0 variance 1 Gaussian random variables. We define

P
(1)
2 , P

(1)
3 , . . .

to be the laws of the random matrices

[√
2ξ1,1 ξ1,2
ξ1,2

√
2ξ2,2

]
∈ H(1)

2 ,

√2ξ1,1 ξ1,2 ξ1,3
ξ1,2

√
2ξ2,2 ξ2,3

ξ1,3 ξ2,3
√
2ξ3,3

 ∈ H(1)
3 , . . . ,

respectively. We define

P
(2)
2 , P

(2)
3 , . . .

to be the laws of the random matrices

[
ξ1,1

ξ1,2+iη1,2√
2

ξ1,2−iη1,2√
2

ξ2,2

]
∈ H(2)

2 ,

 ξ1,1
ξ1,2+iη1,2√

2

ξ1,3+iη1,3√
2

ξ1,2−iη1,2√
2

ξ2,2
ξ2,3+iη2,3√

2
ξ1,3−iη1,3√

2

ξ2,3−iη2,3√
2

ξ3,3

 ∈ H(2)
3 , . . . ,

respectively. A random matrix X ∈ H(β)
N with law P

(β)
N is said to belong to the Gaussian orthogonal

ensemble (GOE) or the Gaussian unitary ensemble (GUE) according as β = 1 or β = 2, respectively. The
theory of Wigner matrices developed in previous sections applies here. In particular, for fixed β, given

for each N a random matrix X(N) ∈ H(β)
N with law P

(β)
N , the empirical distribution of the eigenvalues of

XN := X(N)/
√
N tends to the semicircle law of mean 0 and variance 1.

Definition 2.5.1 Let x = (x1, . . . , xN ) ∈ CN . The Vandermonde determinant associated with x is

∆(x) = det

({
xj−1
i

}n

i,j=1

)
=
∏
i<j

(xj − xi).

The main result in this section is the following.

Theorem 2.5.2 (Joint distribution of eigenvalues: GOE and GUE) Let X ∈ H(β)
N be random with

law P
(β)
N , β = 1, 2. The joint distribution of eigenvalues λ1(X) ≤ · · · ≤ λN (X) has density with respect to

Lebesgue measure which equals

N !C
(β)

N 1x1≤···≤xN
|∆(x)|β

N∏
i=1

e−βx2
i /4,

where

N !C
(β)

N = N !

(∫ ∞

−∞
· · ·
∫ ∞

−∞
|∆(x)|β

N∏
i=1

e−βx2
i /4 dxi

)−1

= (2π)−N/2

(
β

2

)βN(N−1)/4+N/2 N∏
j=1

Γ(β/2)

Γ(jβ/2)
.

A consequence of Theorem 2.5.2 is that almost surely, the eigenvalues of the GOE and GUE are all distinct.
Let ν1, . . . , νN denote the eigenvectors corresponding to the eigenvalues (λN

1 , . . . , λN
N ) of a matrix X from

GOE(N) or GUE(N), with their first nonzero entry positive real. Recall that O(N) (the group of orthogonal
matrices) and U(N) (the group of unitary matrices) admit a unique Haar probability measure (Theorem
F.13). The invariance of the law of X under arbitrary orthogonal (unitary) transformations implies then the
following.



Corollary 2.5.4 The collection (ν1, . . . , νN ) is independent of the eigenvalues (λN
1 , . . . , λN

N ). Each of the
eigenvectors ν1, . . . , νN is distributed uniformly on

SN−1
+ = {x = (x1, . . . , xN ) : xi ∈ R, ‖x‖2 = 1, x1 > 0 }

(for the GOE), or on

SN−1
C,+ = {x = (x1, . . . , xN ) : x1 ∈ R, xi ∈ C for i ≥ 2, ‖x‖2 = 1, x1 > 0 }

(for the GUE). Further, (ν1, . . . , νN ) is distributed like a sample of Haar measure on O(N) (for the GOE)
or U(N) (for the GUE), with each column multiplied by a norm one scalar so that the columns all belong
to SN−1

+ (for the GOE) and SN−1
C,+ (for the GUE).

2.5.2 Proof of the joint distribution of eigenvalues

2.5.3 Selberg’s integral formula and proof of (2.5.4)

To complete the description of the joint distribution of eigenvalues of the GOE, GUE and GSE, we derive
in this section an expression for the normalization constant in (2.5.4).
We begin by stating Selberg’s integral formula. We then describe in Corollary 2.5.9 a couple of limiting cases
of Selberg’s formula. The evaluation of the normalization constant in (2.5.4) is immediate from Corollary
2.5.9. Recall, that ∆(x) denotes the Vandermonde determinant of x.

Theorem 2.5.8 (Selberg’s integral formula) For all positive numbers a, b and c, we have

1

n!

∫ 1

0

· · ·
∫ 1

0

|∆(x)|2c
n∏

i=1

xa−1
i (1− xi)

b−1 dxi =

n−1∏
j=0

Γ(a+ jc)Γ(b+ jc)Γ((j + 1)c)

Γ(a+ b+ (n+ j − 1)c)Γ(c)
.

Corollary 2.5.9 For all positive numbers a and c, we have

1

n!

∫ ∞

0

· · ·
∫ ∞

0

|∆(x)|2c
n∏

i=1

xa−1
i e−xi dxi =

n−1∏
j=1

Γ(a+ jc)Γ((j + 1)c)

Γ(c)
,

and
1

n!

∫ ∞

−∞
· · ·
∫ ∞

−∞
|∆(x)|2c

n∏
i=1

e−x2
i /2 dxi = (2π)n/2

n−1∏
j=0

Γ((j + 1)c)

Γ(c)
.

Remark 2.5.10 The identities in Theorem 2.5.8 and Corollary 2.5.9 hold under rather less stringent condi-
tions on the parameters a, b, and c. For example, one can allow a, b, and c to be complex with positive real
parts. We note also that the second part of Corollary 2.5.9 is directly relevant to the study of normaliza-
tion constants for the GOE and GUE. The usefulness of the other more complicated formulas will become
apparent in Section 4.1.

2.5.4 Joint distribution of eigenvalues: alternative formulation


