
Math 606, Summer 20221: Gaussian Processes; version of June 25, 2022

Homework problems

(1) Let Z be a standard Gaussian random variable. Determine the values of the real number
r for which E|Z|r exits and compute the expectation for those r. Express your answer in
terms of the Gamma function

Γ(x) =

∫ +∞

0

tx−1e−tdt,

and simplify the answer when possible (for example, when r is a positive even number).

In particular, confirm that EZ4 = 3.
(2) Confirm, numerically or otherwise, that the function

F (x) = 2−221−41x/10

, x > 0,

can be a good approximation of the standard normal cdf. In what range of values x would
you use such an approximation?
Reference: A. Soranzo and E. Epure, Very Simply Explicitly Invertible Approximations of

Normal Cumulative and Normal Quantile Function, Applied Mathematical Sciences, volume
8, number 87, 4323–4341, 2014, http://dx.doi.org/10.12988/ams.2014.45338.

(3) Let Z be a standard normal random variable. Prove that, for every x > 1,

1√
2π

x

1 + x2
e−x2/2 ≤ P(Z ≥ x) ≤ 1√

2π x
e−x2/2.

[This is all about integration by parts. For the lower bound, start by computing the deriv-

ative of x−1e−x2/2; then note that the function f(x) = x2/(1 + x2) is increasing for x > 0.]
(4) Let X,Y be standard normal such that the joint distribution of X and Y is also normal and

EXY = ρ. Compute (a) E
(
|X|Y

)
; (b) E(X2Y 2) (c) the correlation coefficient between X2

and Y 2. [Possible answers: 0, 2ρ2 + 1, ρ2]
(5) Below, i =

√
−1, (·, ·) is inner product in Euclidean space; C−1 means inverse of the matrix

C; CT means the transpose of C. Vectors are thought of as matrices with one column.
(A) Confirm that the following three definitions of a Gaussian vector X = (X1, . . . , Xn)

are equivalent:
(a) Eei(X,λ) = ei(λ,µ)−(1/2)(Cλ,λ) for some vector µ and a symmetric non-negative definite

matrix C; with this characterization, also confirm that µ = EX and C = CXX is the
covariance matrix of X;

(b) (a,X) is a Gaussian random variable for every a ∈ Rn

(c) X = µ+L(Z), where Z is a vector with iid standard normal components and L : Rn →
Rn is a linear mapping.

(B) [The multi-dimensional normal correlation theorem] Let X be a Gaussian vector in
Rn, let Y be a Gaussian vector in Rm and assume that the combined vector X,Y is Gaussian
in Rm+n and the covariance matrix CY Y of Y is invertible. Confirm that

E(X|Y ) = EX + CXYC
−1
Y Y (Y − EY ), E

(
X − E(X|Y )

)(
X − E(X|Y )

)T

= CXX − CXYC
−1
Y YCY X .

Note that CY X = CT
XY .

Start by finding a matrix A such that the vector

X − EX − A(Y − EY )

and the vector Y − EY are uncorrelated. [Hint: A = CXYC
−1
Y Y ].

Confirm that if m = n = 1, then the conditional expectation is the equation of the
regression line of Xon Y .
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What if the matrix CY Y is not invertible?
(6) Let (X1, . . . , Xn) be a Gaussian vector with non-singular covariance matrix C = (Cij, i, j =

1, . . . , n).
(a) What can we say about the random variables X1 and X2 if C12 = 0? [Independent?]
(b) What can we say about the random variablesX1 andX2 if (C

−1)12 = 0? [Conditionally
independent?]

(c) Construct two examples of the matric C such that (i) C12 = 0, (C−1)12 6= 0; (ii)
C12 6= 0, (C−1)12 = 0.

(7) Let X be a standard Gaussian random variable. Given a real number a > 0, define the
random variable Ya by

Ya =

{
X, |X| > a

−X |X| < a.

(a) Confirm that Ya is standard Gaussian.
(b) Confirm that EXYa = 0 for some a > 0. [Use Intermediate Value Theorem.]
(c) Are there any values of a such that the vector (X,Ya) is Gaussian? [No: X + Ya = 0

with positive probability].
(8) Let X1, X2, X3 be iid standard normal and define

Y =
X1 +X2X3√

1 +X2
3

.

(a) Confirm that Y is a standard Gaussian random variable [condition on X3; do we need
X3 to be Gaussian for the computations to work?].
(b) For what i will the vector (Xi, Y ) be Gaussian? [Looks like only for i = 3]

(9) Let X and Y be iid standard normal and define

Z =

{
X, if XY > 0

−X, if XY ≤ 0.

Confirm that Z is normal but the vector (Z, Y ) is not jointly normal. [Note that P (Z >
0|Y < 0) = 0.]

(10) Let (X1, . . . , Xn) be a Gaussian vector with mean zero, EX2
k = 1, and EXkXm = r, k 6= m.

What is the possible range of values for r? [r ∈ [0, 1] is always OK, for r < 0, it depends on
n. For example, r ≥ −1/2 for n = 3].

(11) Let Z be a random vector in Rn with iid standard Gaussian components, and denote by |Z|
the Euclidean norm of Z. Confirm that the vector Z/|Z| is uniformly distributed on the
unit sphere in Rn.

(12) Let X be standard normal, let ξ1, ξ2, . . . be independent exponential random variables with
mean 1, and let N be a Poisson random variable with mean r2/2, r > 0. Assume that all

the random variables are independent. Confirm that (X + r)2 and X2 + 2
∑N

k=1 ξk have the
same distribution. [Compare the moment generating functions.]

(13) Let X and Y be iid random variables with finite second moment. Confirm that if the random
variables X+Y and X−Y are independent, then both X and Y are Gaussian. [Hint: Feller,
Vol. 2, Theorem III. 4]

(14) Let H be an infinite-dimensional separable Hilbert space. Confirm that there is no (positive
countably additive) measure on B(H) that is rotation-invariant and is finite on bounded
open sets. [Look at balls of radius 1/2 centered at the elements of an orthonormal basis;
they do not intersect, fit inside the ball of radius 2 centered at the origin, and must all have
the same nonzero measure.]

(15) Let K = K(x, y) be a continuous positive-definite kernel for (x, y) ∈ [0, 1]× [0, 1].
(a) Confirm that K(x, x) ≥ 0 [argue by contradiction, by assuming that K(a, a) < 0 for

some a ∈ (0, 1) and then constructing a suitable function f , supported near a such that∫∫
f(x)f(y)K(x, y)dxdy < 0];
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(b) Give an example ofK such thatK(x, y) < 0 for some x, y. [K(x, y) = sin(2πx) sin(2πy)
might work. Now, how about K(x, y) = F (x− y) for some function F?]

(16) Confirm that if W = W (t) is a standard Brownian motions, then the process X(t) =
(1− t)W

(
t/(1− t)

)
, t ∈ (0, 1), with X(0) = X(1) = 0, is a Brownian bridge. [Note that the

function t 7→ t/(1− t) is increasing on (0, 1).]
(17) Confirm that if W = W (t), t ≥ 0, is a standard Brownian motions, then

X(t) = e−tW
(
e2t − 1

)
, t ≥ 0,

is an Ornstein-Uhlenbeck process.
(18) Derive/verify the KL expansions for the standard Brownian motion and Brownian bridge on

the interval [0, L]. Use the results (together with the appropriate wave equation) to estimate
the lowest frequency of the clarinet [taking L = 0.6 meters] and the flute [taking L = 0.7
meters].

(19) If W = W (t) is the standard Brownian motion on (Ω,F ,P), then, by the Cameron-Martin
formula,

E exp

(
−1

2

∫ T

0

W 2(t) dt

)
=

1√
cosh(T )

.

Using this result confirm that, for every p > 0,

E exp

(
−p

∫ T

0

W 2(t) dt

)
=

1√
cosh(T

√
2p)

,

or, equivalently, for λ > 0,

E exp

(
−λ2

2

∫ T

0

W 2(t) dt

)
=

1√
cosh(λT )

.

[Use that
√
λW (t/λ) is a standard Brownian motion.] The original result of Cameron and

Martin also includes p < 0. Can you recover it?
(20) Let W = W (t), t ≥ 0, be a standard Brownian motion in Rd, let X0 be a Gaussian random

vector in Rd independent of W , and let A and B be square d-by-d matrices. Investigate the
Gaussian process X = X(t) defined by

X(t) = X0 +

∫ t

0

AX(s) ds+BW (t).

(21) Let W = W (t), t ≥ 0, be a standard Brownian motion. For a, b > 0, compute

E sup
t>0

W (t)

a+ bt
.

[Note that the probability that supt>0
W (t)
a+bt

is bigger than x > 0 is the same as the probability
that the first time W (t) hits the line ax+ bxt is finite].

(22) Let a, b be real numbers and let Ẇ be Gaussian white noise. Construct and implement on
the computer an exact time discretization of the equations

Ẋ = aX + Ẇ and Ẍ + aẊ + bX = Ẇ ,

with zero initial conditions. Can you extend the method to higher-order equations?
[For the first equation, the starting point is the equality

X(tk+1) = X(tk)e
a(tk+1−tk) + ξk+1

where ξk+1 =
∫ tk+1

tk
ea(tk+1−s)dW (s) is a Gaussian random variable with zero mean and known

variance, and the random variables ξk are independent for different k. A similar formula
exists for all inhomogeneous linear equations with constant coefficients.]
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(23) Let K = K(t, s) be a continuous symmetric [K(t, s) = K(s, t)] real-valued function defined
on [0, 1]× [0, 1]. Consider the following two conditions:

N∑
m,n=1

K(tm, tn)aiaj ≥ 0 for all t1, . . . tN ∈ [0, 1] and a1, . . . , aN ∈ R;(1.1)

∫ 1

0

∫ 1

0

K(t, s)f(t)f(s) dsdt ≥ 0 for all f ∈ L2((0, 1)).(1.2)

(a) True or false: (1.1) implies (1.2)?
(b) True or false: (1.2) implies (1.1)?
In each case, either give a proof or construct a counterexample. [In each case, continuity

implies that the answer is “yes” so the fun part is to relax continuity assumption to L2 or
L∞]
(c) Confirm that condition (1.1) always [i.e. regardless of continuity ofK] impliesK(t, t) ≥

0 and |K(t, s)|2 ≤ K(t, t)K(s, s).
(24) Use a software package of your choice to plot a sample path (surface) for each of the following

zero-mean Gaussian fields on [0, 1]× [0, 1], defined by the covariance function R(x,y), x =
(x1, x2), y = (y1, y2):

(a) min(x1, x2) ·min(y1, y2) [Brownian sheet];

(b) min(x1, x2) ·
(
min(y1, y2)− y1y2

)
[Kiefer field];

(c)
(
min(x1, x2)− x1x2

)
·
(
min(y1, y2)− y1y2

)
;

(d) |x|+|y|−|x−y|
2

[Lévy Brownian motion];
(e) Green’s function of the Dirichlet Laplacian [Gaussian free field].
Are the fields in parts (c) and (e) the same? [Hint: No].

(25) Let Ẇ be Gaussian white noise over L2((0, 1)). Denote by B1 the unit ball in L((0, 1)) and
denote by B2 the unit ball in H0

1 ((0, 1)).
(a) Confirm that P

(
supf∈B1

Ẇ [f ] = +∞
)
= 1. [Take f = hk, an element of an orthonor-

mal basis in L2((0, 1)).]
(b) True or false: P

(
supf∈B2

Ẇ [f ] < +∞
)
= 1? Justify your answer. [Section 10.4 of our

book might contain the solution.]
(26) Let µ be the standard Gaussian measure in Rn. Denote by B1 the unit ball in Rn with

respect to the usual Euclidean metric. For a measurable set A, define

µ+(A) = lim inf
ε→0

µ(A+ εB1)− µ(A)

ε
.

Confirm that if A = {x = (x1, . . . , xn) ∈ Rn : x1 ≤ a} for some a ∈ R, then

µ(A) =
1√
2π

∫ a

−∞
e−x2/2 dx and µ+(A) =

1√
2π

e−a2/2.

(27) Let Φ be the standard normal cdf and let φ be the standard normal pdf. For x ∈ (0, 1),
define the function I(x) = φ

(
Φ−1(x)

)
. Confirm that

lim
x→0+

I(x)

x
√
2 ln(1/x)

= 1.

[The key computation is Φ−1(t) ∼
√
2 ln(1/t), t → 0+.]

(28) Identify the Cameron-Martin space of a Gaussian measure on Rn. Do not assume that the
covariance matrix is non-singular.

(29) (a) Confirm that if the random variable Y stochastically dominates the random variable Y
(P(X > r) ≤ P(Y > r) for all t ∈ R) and E|X| < ∞, then EX ≤ EY [note that we are not
assuming X ≥ 0].
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(b) Using Fernique-Sudakov, confirm that E supt∈TX(t) ≥ 0 for every zero-mean Gaussian
process X. When is the equality achieved?

(30) Let WH be fractional Brownian motion with Hurst parameter H ∈ (0, 1). Then ρX(t, s) =
|t − s|H , and the Fernique-Sudakov inequality immediately implies that the function H 7→
E sup0<t<1W

H(t) is decreasing in H. What can you say about the function
H 7→ E sup0<t<T WH(t) for an arbitrary fixed T > 0? [Self-similarity of WH might allow
the reduction to the case T = 1.]

Key words and phrases

(1) Cameron-Martin space
(2) Chaining
(3) Dudley’s integral
(4) Fernique’s Theorem
(5) Gaussian inequalities: comparison, correlation, isoperimetric, measure concavity, etc.
(6) KL expansion
(7) LIL
(8) Slepian’s lemma

Basic ideas.

(1) Many representations of Gaussian processes have an analogy with various matrix decompo-
sitions in linear algebra.

(2) A suitable representation of the Gaussian process can lead to the complete mathematical
solution of a particular problem [e.g. KL expansion solves the small ball problem in a
suitable Hilbert space; with a right kernel, integral representation solves the large deviation
problem, and also identifies the Cameron-Martin space].

(3) Mercer’s theorem is still work in progress.
(4) RKHS (reproducing kernel Hilbert space) is all over the place.

Reflective questions for discussions.2

(1) Select a book on the topic and write a review, either in the spirit of Mathematical Reviews,
or following a more comprehensive approach of the Book Review section of the Bulletin of
the American Mathematical Society.

(2) Take one homework problem you have worked on this semester that you struggled to under-
stand and solve, and explain how (or if...) the struggle itself was valuable.

(3) What mathematical ideas are you curious to know more about as a result of taking this
class? Give one example of a question about the material that you would like to explore
further, and explain why you consider this question interesting.

(4) What three theorems did you most enjoy from the course, and why?
(5) Formulate a research question related to the course material that you would like to answer.
(6) Reflect on your overall experience in this class by describing an interesting idea that you

learned, why it was interesting, and what it tells you about doing or creating mathematics.
(7) Think of one particular proof [of a result related to the topic of this class] and share your

ideas about the ways you think the proof should be improved.
(8) If you were to write a textbook on the subject, what topics would you include, what topics

would you exclude, and why? How about a research monograph?

2Most are not mine, including the wording. Suggestions for improvement will be part of the discussion.


