Math 606, Summer 2022¹: Gaussian Processes; version of June 25, 2022

HOMEWORK PROBLEMS

(1) Let Z be a standard Gaussian random variable. Determine the values of the real number r for which $\mathbb{E}|Z|^r$ exits and compute the expectation for those r. Express your answer in terms of the Gamma function

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt,$$

and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that $\mathbb{E}Z^4 = 3$.

(2) Confirm, numerically or otherwise, that the function

$$F(x) = 2^{-22^{1-41^{x/10}}}, \ x > 0,$$

can be a good approximation of the standard normal cdf. In what range of values x would you use such an approximation?

Reference: A. Soranzo and E. Epure, Very Simply Explicitly Invertible Approximations of Normal Cumulative and Normal Quantile Function, Applied Mathematical Sciences, volume 8, number 87, 4323–4341, 2014, http://dx.doi.org/10.12988/ams.2014.45338.

(3) Let Z be a standard normal random variable. Prove that, for every x > 1,

$$\frac{1}{\sqrt{2\pi}} \frac{x}{1+x^2} e^{-x^2/2} \le \mathbb{P}(Z \ge x) \le \frac{1}{\sqrt{2\pi}x} e^{-x^2/2}.$$

[This is all about integration by parts. For the lower bound, start by computing the derivative of $x^{-1}e^{-x^2/2}$; then note that the function $f(x) = x^2/(1+x^2)$ is increasing for x > 0.]

- (4) Let X, Y be standard normal such that the joint distribution of X and Y is also normal and $\mathbb{E}XY = \rho$. Compute (a) $\mathbb{E}(|X|Y)$; (b) $\mathbb{E}(X^2Y^2)$ (c) the correlation coefficient between X^2 and Y^2 . [Possible answers: 0, $2\rho^2 + 1$, ρ^2]
- (5) Below, $\mathbf{i} = \sqrt{-1}$, (\cdot, \cdot) is inner product in Euclidean space; C^{-1} means inverse of the matrix C; C^T means the transpose of C. Vectors are thought of as matrices with one column.

(A) Confirm that the following three definitions of a Gaussian vector $X = (X_1, \ldots, X_n)$ are equivalent:

- (a) $\mathbb{E}e^{i(X,\lambda)} = e^{i(\lambda,\mu) (1/2)(C\lambda,\lambda)}$ for some vector μ and a symmetric non-negative definite matrix C; with this characterization, also confirm that $\mu = \mathbb{E}X$ and $C = C_{XX}$ is the covariance matrix of X;
- (b) (a, X) is a Gaussian random variable for every $a \in \mathbb{R}^n$
- (c) $X = \mu + \mathcal{L}(Z)$, where Z is a vector with iid standard normal components and $\mathcal{L} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear mapping.

(B) [The multi-dimensional normal correlation theorem] Let X be a Gaussian vector in \mathbb{R}^n , let Y be a Gaussian vector in \mathbb{R}^m and assume that the combined vector X, Y is Gaussian in \mathbb{R}^{m+n} and the covariance matrix C_{YY} of Y is invertible. Confirm that

$$\mathbb{E}(X|Y) = \mathbb{E}X + C_{XY}C_{YY}^{-1}(Y - \mathbb{E}Y), \ \mathbb{E}\left(X - \mathbb{E}(X|Y)\right)\left(X - \mathbb{E}(X|Y)\right)^T = C_{XX} - C_{XY}C_{YY}^{-1}C_{YX}.$$

Note that $C_{YX} = C_{XY}^T$.

Start by finding a matrix A such that the vector

$$X - \mathbb{E}X - A(Y - \mathbb{E}Y)$$

and the vector $Y - \mathbb{E}Y$ are uncorrelated. [Hint: $A = C_{XY}C_{YY}^{-1}$].

Confirm that if m = n = 1, then the conditional expectation is the equation of the regression line of X on Y.

¹Sergey Lototsky, USC

What if the matrix C_{YY} is not invertible?

- (6) Let (X_1, \ldots, X_n) be a Gaussian vector with non-singular covariance matrix $C = (C_{ij}, i, j = 1, \ldots, n)$.
 - (a) What can we say about the random variables X_1 and X_2 if $C_{12} = 0$? [Independent?]

(b) What can we say about the random variables X_1 and X_2 if $(C^{-1})_{12} = 0$? [Conditionally independent?]

(c) Construct two examples of the matric C such that (i) $C_{12} = 0$, $(C^{-1})_{12} \neq 0$; (ii) $C_{12} \neq 0$, $(C^{-1})_{12} = 0$.

(7) Let X be a standard Gaussian random variable. Given a real number a > 0, define the random variable Y_a by

$$Y_a = \begin{cases} X, & |X| > a \\ -X & |X| < a. \end{cases}$$

(a) Confirm that Y_a is standard Gaussian.

(b) Confirm that $\mathbb{E}XY_a = 0$ for some a > 0. [Use Intermediate Value Theorem.]

(c) Are there any values of a such that the vector (X, Y_a) is Gaussian? [No: $X + Y_a = 0$ with positive probability].

(8) Let X_1, X_2, X_3 be iid standard normal and define

$$Y = \frac{X_1 + X_2 X_3}{\sqrt{1 + X_3^2}}.$$

(a) Confirm that Y is a standard Gaussian random variable [condition on X_3 ; do we need X_3 to be Gaussian for the computations to work?].

(b) For what i will the vector (X_i, Y) be Gaussian? [Looks like only for i = 3]

(9) Let X and Y be iid standard normal and define

 $\iint f(x)f(y)K(x,y)dxdy < 0];$

$$Z = \begin{cases} X, & \text{if } XY > 0\\ -X, & \text{if } XY \le 0. \end{cases}$$

Confirm that Z is normal but the vector (Z, Y) is not jointly normal. [Note that P(Z > 0|Y < 0) = 0.]

- (10) Let (X_1, \ldots, X_n) be a Gaussian vector with mean zero, $\mathbb{E}X_k^2 = 1$, and $\mathbb{E}X_k X_m = r$, $k \neq m$. What is the possible range of values for r? $[r \in [0, 1]$ is always OK, for r < 0, it depends on n. For example, $r \geq -1/2$ for n = 3].
- (11) Let Z be a random vector in \mathbb{R}^n with iid standard Gaussian components, and denote by |Z| the Euclidean norm of Z. Confirm that the vector Z/|Z| is uniformly distributed on the unit sphere in \mathbb{R}^n .
- (12) Let X be standard normal, let ξ_1, ξ_2, \ldots be independent exponential random variables with mean 1, and let N be a Poisson random variable with mean $r^2/2$, r > 0. Assume that all the random variables are independent. Confirm that $(X + r)^2$ and $X^2 + 2\sum_{k=1}^{N} \xi_k$ have the same distribution. [Compare the moment generating functions.]
- (13) Let X and Y be iid random variables with finite second moment. Confirm that if the random variables X + Y and X Y are independent, then both X and Y are Gaussian. [Hint: Feller, Vol. 2, Theorem III. 4]
- (14) Let H be an infinite-dimensional separable Hilbert space. Confirm that there is no (positive countably additive) measure on $\mathcal{B}(H)$ that is rotation-invariant and is finite on bounded open sets. [Look at balls of radius 1/2 centered at the elements of an orthonormal basis; they do not intersect, fit inside the ball of radius 2 centered at the origin, and must all have the same nonzero measure.]
- (15) Let K = K(x, y) be a continuous positive-definite kernel for (x, y) ∈ [0, 1] × [0, 1].
 (a) Confirm that K(x, x) ≥ 0 [argue by contradiction, by assuming that K(a, a) < 0 for some a ∈ (0, 1) and then constructing a suitable function f, supported near a such that

(b) Give an example of K such that K(x, y) < 0 for some x, y. $[K(x, y) = \sin(2\pi x)\sin(2\pi y)]$ might work. Now, how about K(x, y) = F(x - y) for some function F?]

- (16) Confirm that if W = W(t) is a standard Brownian motions, then the process $X(t) = (1-t)W(t/(1-t)), t \in (0,1)$, with X(0) = X(1) = 0, is a Brownian bridge. [Note that the function $t \mapsto t/(1-t)$ is increasing on (0,1).]
- (17) Confirm that if $W = W(t), t \ge 0$, is a standard Brownian motions, then

$$X(t) = e^{-t} W(e^{2t} - 1), \ t \ge 0,$$

is an Ornstein-Uhlenbeck process.

- (18) Derive/verify the KL expansions for the standard Brownian motion and Brownian bridge on the interval [0, L]. Use the results (together with the appropriate wave equation) to estimate the lowest frequency of the clarinet [taking L = 0.6 meters] and the flute [taking L = 0.7 meters].
- (19) If W = W(t) is the standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$, then, by the Cameron-Martin formula,

$$\mathbb{E}\exp\left(-\frac{1}{2}\int_0^T W^2(t)\,dt\right) = \frac{1}{\sqrt{\cosh(T)}}.$$

Using this result confirm that, for every p > 0,

$$\mathbb{E}\exp\left(-p\int_0^T W^2(t)\,dt\right) = \frac{1}{\sqrt{\cosh(T\sqrt{2p})}}$$

or, equivalently, for $\lambda > 0$,

$$\mathbb{E}\exp\left(-\frac{\lambda^2}{2}\int_0^T W^2(t)\,dt\right) = \frac{1}{\sqrt{\cosh(\lambda T)}}$$

[Use that $\sqrt{\lambda}W(t/\lambda)$ is a standard Brownian motion.] The original result of Cameron and Martin also includes p < 0. Can you recover it?

(20) Let $W = W(t), t \ge 0$, be a standard Brownian motion in \mathbb{R}^d , let X_0 be a Gaussian random vector in \mathbb{R}^d independent of W, and let A and B be square d-by-d matrices. Investigate the Gaussian process X = X(t) defined by

$$X(t) = X_0 + \int_0^t AX(s) \, ds + BW(t).$$

(21) Let W = W(t), $t \ge 0$, be a standard Brownian motion. For a, b > 0, compute

$$\mathbb{E}\sup_{t>0}\frac{W(t)}{a+bt}.$$

[Note that the probability that $\sup_{t>0} \frac{W(t)}{a+bt}$ is bigger than x > 0 is the same as the probability that the first time W(t) hits the line ax + bxt is finite].

(22) Let a, b be real numbers and let W be Gaussian white noise. Construct and implement on the computer an *exact* time discretization of the equations

$$\dot{X} = aX + \dot{W}$$
 and $\ddot{X} + a\dot{X} + bX = \dot{W}$,

with zero initial conditions. Can you extend the method to higher-order equations? [For the first equation, the starting point is the equality

$$X(t_{k+1}) = X(t_k)e^{a(t_{k+1}-t_k)} + \xi_{k+1}$$

where $\xi_{k+1} = \int_{t_k}^{t_{k+1}} e^{a(t_{k+1}-s)} dW(s)$ is a Gaussian random variable with zero mean and known variance, and the random variables ξ_k are independent for different k. A similar formula exists for all inhomogeneous linear equations with constant coefficients.]

(23) Let K = K(t, s) be a continuous symmetric [K(t, s) = K(s, t)] real-valued function defined on $[0,1] \times [0,1]$. Consider the following two conditions:

(1.1)
$$\sum_{m,n=1}^{N} K(t_m, t_n) a_i a_j \ge 0 \text{ for all } t_1, \dots, t_N \in [0, 1] \text{ and } a_1, \dots, a_N \in \mathbb{R};$$

(1.2)
$$\int_0^1 \int_0^1 K(t,s)f(t)f(s) \, ds dt \ge 0 \text{ for all } f \in L_2((0,1)).$$

(a) True or false: (1.1) implies (1.2)?

(b) True or false: (1.2) implies (1.1)?

In each case, either give a proof or construct a counterexample. [In each case, continuity implies that the answer is "yes" so the fun part is to relax continuity assumption to L_2 or L_{∞}

(c) Confirm that condition (1.1) always [i.e. regardless of continuity of K] implies $K(t,t) \geq 1$ 0 and $|K(t,s)|^2 \le K(t,t)K(s,s)$.

- (24) Use a software package of your choice to plot a sample path (surface) for each of the following zero-mean Gaussian fields on $[0,1] \times [0,1]$, defined by the covariance function $R(\boldsymbol{x},\boldsymbol{y}), \boldsymbol{x} =$ $(x_1, x_2), \ \boldsymbol{y} = (y_1, y_2)$:
 - (a) $\min(x_1, x_2) \cdot \min(y_1, y_2)$ [Brownian sheet];

(b)
$$\min(x_1, x_2) \cdot (\min(y_1, y_2) - y_1 y_2)$$
 [Kiefer field]

(b)
$$\min(x_1, x_2) \cdot \left(\min(y_1, y_2) - y_1 y_2\right)$$
 [Kiefer field];
(c) $\left(\min(x_1, x_2) - x_1 x_2\right) \cdot \left(\min(y_1, y_2) - y_1 y_2\right)$;

- (d) |x|+|y|-|x-y| [Lévy Brownian motion];
 (e) Green's function of the Dirichlet Laplacian [Gaussian free field].
- Are the fields in parts (c) and (e) the same? [Hint: No].
- (25) Let W be Gaussian white noise over $L_2((0,1))$. Denote by B_1 the unit ball in $L_1(0,1)$ and denote by B_2 the unit ball in $H_1^0((0,1))$.

(a) Confirm that $\mathbb{P}(\sup_{f \in B_1} \tilde{W}[f] = +\infty) = 1$. [Take $f = h_k$, an element of an orthonormal basis in $L_2((0, 1))$.]

(b) True or false: $\mathbb{P}(\sup_{f \in B_2} \dot{W}[f] < +\infty) = 1$? Justify your answer. [Section 10.4 of our book might contain the solution.]

(26) Let μ be the standard Gaussian measure in \mathbb{R}^n . Denote by B_1 the unit ball in \mathbb{R}^n with respect to the usual Euclidean metric. For a measurable set A, define

$$\mu^+(A) = \liminf_{\varepsilon \to 0} \frac{\mu(A + \varepsilon B_1) - \mu(A)}{\varepsilon}.$$

Confirm that if $A = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \leq a\}$ for some $a \in \mathbb{R}$, then

$$\mu(A) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$$
 and $\mu^{+}(A) = \frac{1}{\sqrt{2\pi}} e^{-a^2/2}.$

(27) Let Φ be the standard normal cdf and let φ be the standard normal pdf. For $x \in (0, 1)$, define the function $I(x) = \varphi(\Phi^{-1}(x))$. Confirm that

$$\lim_{x \to 0+} \frac{I(x)}{x\sqrt{2\ln(1/x)}} = 1.$$

[The key computation is $\Phi^{-1}(t) \sim \sqrt{2\ln(1/t)}, t \to 0+.$]

- (28) Identify the Cameron-Martin space of a Gaussian measure on \mathbb{R}^n . Do not assume that the covariance matrix is non-singular.
- (29) (a) Confirm that if the random variable Y stochastically dominates the random variable Y $(\mathbb{P}(X > r) \leq \mathbb{P}(Y > r)$ for all $t \in \mathbb{R}$) and $\mathbb{E}|X| < \infty$, then $\mathbb{E}X \leq \mathbb{E}Y$ [note that we are not assuming $X \ge 0$].

(b) Using Fernique-Sudakov, confirm that $\mathbb{E} \sup_{t \in \mathbb{T}} X(t) \ge 0$ for every zero-mean Gaussian process X. When is the equality achieved?

(30) Let W^H be fractional Brownian motion with Hurst parameter $H \in (0, 1)$. Then $\rho_X(t, s) = |t - s|^H$, and the Fernique-Sudakov inequality immediately implies that the function $H \mapsto \mathbb{E} \sup_{0 < t < T} W^H(t)$ is decreasing in H. What can you say about the function $H \mapsto \mathbb{E} \sup_{0 < t < T} W^H(t)$ for an arbitrary fixed T > 0? [Self-similarity of W^H might allow the reduction to the case T = 1.]

Key words and phrases

- (1) Cameron-Martin space
- (2) Chaining
- (3) Dudley's integral
- (4) Fernique's Theorem
- (5) Gaussian inequalities: comparison, correlation, isoperimetric, measure concavity, etc.
- (6) KL expansion
- (7) LIL
- (8) Slepian's lemma

Basic ideas.

- (1) Many representations of Gaussian processes have an analogy with various matrix decompositions in linear algebra.
- (2) A suitable representation of the Gaussian process can lead to the complete *mathematical* solution of a particular problem [e.g. KL expansion solves the small ball problem in a suitable Hilbert space; with a right kernel, integral representation solves the large deviation problem, and also identifies the Cameron-Martin space].
- (3) Mercer's theorem is still work in progress.
- (4) RKHS (reproducing kernel Hilbert space) is all over the place.

Reflective questions for discussions.²

- (1) Select a book on the topic and write a review, either in the spirit of Mathematical Reviews, or following a more comprehensive approach of the Book Review section of the Bulletin of the American Mathematical Society.
- (2) Take one homework problem you have worked on this semester that you struggled to understand and solve, and explain how (or if...) the struggle itself was valuable.
- (3) What mathematical ideas are you curious to know more about as a result of taking this class? Give one example of a question about the material that you would like to explore further, and explain why you consider this question interesting.
- (4) What three theorems did you most enjoy from the course, and why?
- (5) Formulate a research question related to the course material that you would like to answer.
- (6) Reflect on your overall experience in this class by describing an interesting idea that you learned, why it was interesting, and what it tells you about doing or creating mathematics.
- (7) Think of one particular proof [of a result related to the topic of this class] and share your ideas about the ways you think the proof should be improved.
- (8) If you were to write a textbook on the subject, what topics would you include, what topics would you exclude, and why? How about a research monograph?

²Most are not mine, including the wording. Suggestions for improvement will be part of the discussion.