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(Some) Gaussian Inequalities
Isoperimetric. The starting point is the Brunn-Minkowski inequality: if ℓ is the Lebesgue

measure on Rn and A + B = {a + b : a ∈ A, b ∈ B} is the Minkowski sum of two sets, then, for
(convex1, later measurable2) sets A,B in Rn with non-empty interior,(

ℓ(A+B)
)1/n

≥
(
ℓ(A)

)1/n

+
(
ℓ(B)

)1/n

; (1.1)

equality in (1.1) holds if and only if A and B are homothetic, that is, the same up to translation
and dilation. When combined with the equality for the Lebesgue measure of the boundary ∂A of
the set A,

ℓ(∂A) = lim inf
ε→0

ℓ(A+ εB1)− ℓ(A)

ε
, B1 = {x = (x1, . . . , xn) ∈ Rn : x21 + . . .+ x2n < 1}, (1.2)

inequality (1.1) leads to the classical isoperimetric inequality: if ℓ(A) = ℓ(B1), then ℓ(∂A) ≥
ℓ(∂B1), with equality if and only if A is a ball of radius one; recall that ℓ(∂B1) = 2πn/2/Γ(n/2) and
ℓ(B1) = ℓ(∂B1)/n.

If µ is the standard Gaussian measure on Rn, then, similar to (1.2), define

µ+(A) = lim inf
ε→0

µ(A+ εB1)− µ(A)

ε
(1.3)

and also the following functions

ϕ(x) =
1√
2π
e−x2/2, Φ(x) =

∫ x

−∞
ϕ(t) dt, I(y) = ϕ

(
Φ−1(y)

)
, (1.4)

The result is a Gaussian isoperimetric inequality3

µ+(A) ≥ I
(
µ(A)

)
, (1.5)

with equality if and only if A is a half-space {x ∈ Rn : x1a1+ . . .+xnan ≤ r} for some fixed a ∈ Rn

and r ∈ R. Two equivalent forms of (1.5) are

Φ−1
(
µ(A+ εB1)

)
≥ Φ−1

(
µ(A)

)
+ ε, ε > 0 (1.6)

and4

I
(
E(f(Z))

)
≤ E

√
I2(f(Z)) + |∇f(Z)|2; (1.7)

in (1.7), I is the function from (1.4), Z is a standard Gaussian random vector in Rn, and f is a
continuously differentiable function satisfying 0 < f(x) < 1.

The main corollaries of (1.5)–(1.7) are

• the (Gaussian) log-Sobolev inequality5

E
(
|g(Z)|2 ln |g(Z)|

)
≤ E|∇g(Z)|2 (1.8)

for a continuously differentiable function g satisfying Eg2(Z) = 1 [can be derived from (1.7)];
• various concentration inequalities, such as

P
(
f(Z) > Mf + t

)
≤ 1− Φ(t/σ), t > 0, (1.9)

where |f(x) − f(y)| ≤ σ|x − y|, x, y ∈ Rn and Mf is the median of the random variable
f(Z) [this was part of Borell’s paper from 1975].

1Brunn (1887, n = 3), Minkowski (1896)
2Lyusternik (1935)
3Borell (1975), Tsyrelson-Sudakov (1974)
4Bobkov (1997)
5Gross (1975)
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Because (1.5) does not involve n, an extension to a locally convex topological space is (almost)
immediate, as long as the init ball B1 in (1.3) is in the Cameron-Martin space Hµ of µ.

Supremum of a Gaussian process. We have a real-valued, zero-mean Gaussian process
X = X(t), t ∈ T, indexed by an arbitrary set T with at least two elements. The key objects turn
out to be

σ2
X = sup

t∈T
E|X(t)|2, ρX(s, t) =

√
E|X(t)−X(s)|2. (1.10)

Note that ρX(t, t) = 0, but it is possible to have ρX(s, t) = 0 for some t 6= s. Still, by Minkowski’s
inequality (for p = 2), the function ρ satisfies the triangle inequality and thus defines a (pseudo)
distance/metric on T (sometimes called the canonical distance/metric).

To simplify notations, write

X∗
T = sup

t∈T
X(t). (1.11)

Some results, such as Slepian’s inequality (see below), do not hold ifX∗
T is replaced with supt∈T |X(t)|.

For many other purposes, the simple relations

P(X∗
T > r) ≤ P(sup

t∈T
|X(t)| > r) ≤ 2P(X∗

T > r), r ∈ R, (1.12)

EX∗
T ≤ E sup

t∈T
|X(t)| ≤ 2

(
EX∗

T + inf
t∈T

√
E|X(t)|2

)
, (1.13)

are enough to go from X∗
T to supt∈T |X(t)|. The reason for the second inequality in (1.12) is that,

for a zero-mean Gaussian process X = X(t), the process −X has the same covariance function
and hence the same distribution. By noticing that if X∗

T < 0, then X∗
T = − inft∈T |X(t)|, we can

combine (1.12) with the equality

EY =

∫ +∞

0

P(Y > r) dr −
∫ 0

−∞
P(Y ≤ r) dr

to get (1.13).
According to L. Shepp (et al.)6, P(X∗

T <∞) is either 0 or 1; if P(X∗
T <∞) = 1, then

lim
u→+∞

ln P(X∗
T > u)

u2
= − 1

2σ2
X

. (1.14)

In particular,

P(X∗
T <∞) = 1 ⇒ Eeε(X∗

T)2 <∞ for all sufficiently small ε > 0.

One collection of results starts with the Dudley integral

D(r) =

∫ r

0

√
lnN(r) dr, (1.15)

where N(r) is the minimal number of open ball of radius r required to cover T; the radius of the
balls is computed with respect to ρX . Then

7

EX∗
T ≤ 4

√
2D(σX/2); (1.16)

if the right-hand side of (1.16) is finite, then X has a continuous modification on the (pseudo) metric
space (T, ρX); if the process X is stationary and T = [a, b] ⊂ R, then continuity of X implies that
D is finite. Note that, for (1.15) to be finite, it is necessary (but not sufficient) to have T compact
with respect to ρX .

Inequality (1.16) extends to any zero-mean process X = X(t) that is sub-Gaussian with respect

to the canonical [or some other...] metric ρX : Eeλ(X(t)−X(s)) ≤ eλ
2ρ2X(t,s)/2. In other words, instead of

a Gaussian process indexed by an arbitrary set T, the story can begin with a sub-Gaussian process
indexed by a (pseudo) metric space (T, ρX).

6For example, Landau-Shepp (1970)
7Dudley (1967)
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The Borell-TIS8 inequality is somewhat different from (1.16) and is more along the lines of
(1.9): assuming that P(X∗

T <∞) = 1 and using the notation m∗ = EX∗
T,

P(X∗
T −m∗ > r) ≤ e−r2/(2σ2

X), r > 0. (1.17)

As a consequence, we can get a more detailed information about continuity of X on (T, ρX): the
sample paths of X are continuous if and only if if limε→0 ψ(ϵ) = 0, where

ψ(ε) = E sup
ρX(t,s)<ε

(X(t)−X(s)). (1.18)

If (1.18) holds then, with probability one and for all sufficiently small δ > 0,

sup
ρX(t,s)<δ

|X(t)−X(s)| ≤ ψ(δ)| lnψ(δ)|p, p > 0.

Comparison inequalities deal with two zero-mean Gaussian processes X and Y . Using the
notations (1.10) and (1.11), the two main results are as follows:

• Slepian’s inequality.9 If E|X(t)|2 = E|Y (t)|2 and ρX(s, t) ≤ ρY (s, t), s, t ∈ T, then Y ∗
T

stochastically dominates X∗
T:

P(X∗
T > r) ≤ P(Y ∗

T > r), r ∈ R. (1.19)

In particular,

EX∗
T ≤ EY ∗

T. (1.20)

• Fernique-Sudakov inequality.10 If we only have ρX(s, t) ≤ ρY (s, t) (but not E|X(t)|2 =
E|Y (t)|2), then we still have (1.20) (but not necessarily (1.19)).

An immediate consequence of Fernique-Sudakov is that EX∗
T ≥ 0, and the inequality is strict unless

ρX(s, t) = 0 for all t, s ∈ T.
While Slepian’s inequality is more informative, the condition E|X(t)|2 = E|Y (t)|2 makes the re-

sult hard to use, whereas Fernique-Sudakov readily applies to many familiar Gaussian processes.
For example, if X = WH is the fractional Browian motion with Hurst parameter H ∈ (0, 1), then
ρX(t, s) = |t − s|H , and we immediately conclude that the function H 7→ E sup0<t<1W

H(t) is de-
creasing in H.

Recall that a Gaussian measure µ on a locally convex topological space X is called centered if,
for every bounded linear functional f on X, the (Gaussian) random variable f(x) on (X,B(X),µ)
has zero mean.

Anderson’s inequality for a centered Gaussian measure µ on a locally convex topological space
X, a convex symmetric set A ⊂ X and a fixed element x ∈ X,

µ(A+ x) ≤ µ(A),

has an alternative, and more detailed version in Rn: if f = f(x) is a pdf such that f(x) = f(−x)
and the sets {x : f(x) ≥ t} are convex for every t ≥ 0, then∫

A

f(x+ cy) dx ≥
∫
A

f(x+ y) dx

for every convex symmetric set A and every c ∈ (0, 1). For the lower bound on shifted Gaussian
measure, there is an inequality due to Borell (1977):

µ(A+ h) ≥ e
−∥h∥2Hµ µ(A), h ∈ Hµ,

where µ is a centered Gaussian measure on a locally convex topological space X, A ⊂ X is a
measurable symmetric (but not necessarily convex) set, and Hµ is the Cameron-Martin space of µ.

8Borell (1975), Tsyrelson-Ibragimov-Sudakov (1975)
9Slepian (1963)
10Fernique (1974), Sudakov (1970)
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Gaussian Correlation Inequality for a centered Gaussian measure µ and symmetric convex
sets A,B,

µ(A ∩B) ≥ µ(A)µ(B),

used to be a conjecture for about 40 years, and was finally proved in 2014 by Thomas Royen.

An example of the Gaussian Poincaré inequality is

E|f(Z)|2 ≤ E|∇f(Z)|2, (1.21)

where Z is a standard Gaussian random variable on Rn and f : Rn → R is a continuously differen-
tiable function satisfying Ef(Z) = 0.

An example of a Gaussian hypercontractivity inequality is

(E|Ttf(Z)|q)1/q ≤ (E|f(Z)|p)1/p , (1.22)

where q > p > 1, e−t <
√

p−1
q−1

, Z is a standard Gaussian random variable on Rn and, for a (bounded

measurable) function f : Rn → R and t > 0,

Ttf(x) = Ef (Xx(t)) , Xx(t) ∼ N
(
xe−t, (1− e−2t)In×n

)
. (1.23)

One can use (1.23) to prove (1.21); a suitable version of (1.22) can lead to (1.8).

Historical comments.
Theodore Wilbur Anderson (1918–2016) specialized in multivariate analysis and was professor at

Columbia (1946-67) and Stanford (1967-88).
Sergey Bobkov was a student of Sudakov and is now professor at the University of Minnesota.
Christer Borell got his Ph.D. in 1974 from Uppsala university, with dissertation Convex measures

on infinite-dimensional spaces; he is Professor Emeritus at Chalmers University of Technology in Göteborg,
Sweden.

German mathematician Karl Hermann Brunn (1862–1939) worked in convex geometry and knot
theory; he was born in Rome.

American mathematician Richard Mansfield Dudley (1938–2020) was Putnam Fellow and spent
most of his career at MIT (1967–2015).

French mathematician Xavier Fernique (1934–2020) was the Ph.D. advisor of Michel Ledoux.
American mathematician Leonard Gross was born in 1931 and spent most of his career at Cornel

(from 1960 on), where he supervised over 30 Ph.D. students.
Born in 1932, Ildar Abdulovich Ibragimov was an invited speaker at ICM in 1966 and is still active

in math research as a senior member of the laboratory of statistical methods at the Steklov Institute in
Saint Petersburg.

Mathematician Hermann Minkowski (1864–1909) was born in the southern suburbs of Kaunas (at
that time, the Polish part of the Russian empire), studied in Königsberg (now Kaliningrad), and worked in
Germany; he is famous for many important results, and so all the countries involved (Germany, Lithuania,
Poland, Russia) occasionally claim him as their own.

Born in 1947, Thomas Royen worked as a statistician at the pharmaceutical company Hoechst AG
(1977-85), and then taught mathematics and statistics at the University of Applied Sciences Bingen in
Rhineland-Palatinate (1985-2010); apparently, he never used TEX to write his papers.

American mathematician Lawrence Alan Shepp (1936–2013) was a Ph.D. student of W. Feller at
Princeton and had various positions at Bell Labs, Rutgers, UPenn (Warton), Stanford, and the Columbia
Presbyterian Hospital (NYC). Two of his papers, including one in the Annals of Statistics, were published
in 2017.

American mathematician David S. Slepian (1923–2007) worked at Bell Labs and made fundamental
contributions to coding theory. His father, Joseph Slepian, got a Ph.D. from Harward under D. Birkhoff;
his grandparents immigrated from Russia.

Born in 1934, Vladimir Nikolaevich Sudakov keeps a surprisingly low profile. Some on-line sources
suggest that he is “academic brother” of I. A. Ibragimov (both were students of Yu. V. Linnik), and he
was his colleague at the Steklov Institute in Saint Petersburg.

Boris Semyonovich Tsirelson (1950–2020) was a Ph.D. student of I. A. Ibragimov.


