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On Some Inequalities for Gaussian
Measures

R. Latala*

Abstract

We review several inequalities concerning Gaussian measures - isoperi-
metric inequality, Ehrhard’s inequality, Bobkov’s inequality, S-inequality
and correlation conjecture.
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1 Introduction

Gaussian random variables and processes always played a central role in
the probability theory and statistics. The modern theory of Gaussian measures
combines methods from probability theory, analysis, geometry and topology and
is closely connected with diverse applications in functional analysis, statistical
physics, quantum field theory, financial mathematics and other areas. Some
examples of applications of Gaussian measures can be found in monographs
[4, 18, 20] and [23].

In this note we present several inequalities of geometric nature for Gaussian
measures. All of them have elementary formulations, but nevertheless yield
many important and nontrivial consequences. We begin in section 2 with the
already classical Gaussian isoperimetric inequality that inspired in the 70’s and
80’s the vigorous development of concentration inequalities and their applica-
tions in the geometry and local theory of Banach spaces (cf. [19, 24, 32]). In
the sequel we review several more recent results and finish in section 6 with the
discussion of the Gaussian correlation conjecture that remains unsolved more
than 30 years.
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A probability measure p on a real separable Banach space F is called Gaus-
sian if for every functional 2* € F* the induced measure p o (z*)~! is a one-
dimensional Gaussian measure A(a,0?) for some a = a(z*) € R and o =
o(z*) > 0. Throughout this note we only consider centered Gaussian measures
that is the measures such that a(z*) = 0 for all * € F**. A random vector with
values in F is said to be Gaussian if its distribution is Gaussian. Every centered
Gaussian measure on R" is a linear image of the canonical Gaussian measure 7,,,
that is the measure on R with the density dry, (z) = (27) /2 exp(—|z|?/2)dz,
where |z| = />, ;2?. Infinite dimensional Gaussian measures can be effec-
tively approximated by finite dimensional ones using the following series repre-
sentation (cf. [18, Proposition 4.2]): If 4 is a centered Gaussian measure on F
and g1, g2, . . . are independent A/ (0, 1) random variables then there exist vectors
Z1,Z2,... in F such that the series X = ) >° x;9; is convergent almost surely
and in every LP, 0 < p < o0, and is distributed as p.

We will denote by ® the distribution function of the standard normal A(0, 1)
r.v., that is

T

% [m (:_-"2/2(1,1/, —00 <z < o0.
For two sets A, B in a Banach space F' and t € R we will write tA = {tz : z € A}
and A+ B={z+y:2z¢e€Ayec B}). Aset Ain F is said to be symmetric if
—A=A.

Many results presented in this note can be generalized to the more gen-
eral case of Radon Gaussian measures on locally convex spaces. For precise
definitions see [4] or [7].

P(z) = 71 (~00,7) =

2 Gaussian Isoperimetry

For a Borel set Ain R and ¢ > 0let A, = A+tBY = {z € R": |z —a| <
t for some a € A} be the open t-enlargement of A, where B} denotes the open
unit Euclidean ball in R™. The classical isoperimetric inequality for the Lebesgue
measure states that if vol,,(A) = vol,, (rB%) then vol,,(A4;) > vol, ((r +t)B%) for
t > 0. In the early 70’s C. Borell [6] and V.N. Sudakov and B.S. Tsirel’son [29]
proved independently the isoperimetric property of Gaussian measures.

Theorem 2.1 Let A be a Borel set in R™ and let H be an affine halfspace
such that v, (A) = v,(H) = ®(a) for some a € R. Then

Yn(At) = W(Hy) = ®(a+t) for allt > 0. (1)

Theorem 2.1 has an equivalent differential analog. To state it let us define
for a measure g on R™ and any Borel set A the boundary p-measure of A by the
formula

—u(4)

+ T 1(Ay)
W) =l S

Moreover let ¢(z) = ®'(z) = (27)~ /2 exp(—22/2) and let
I(t) = po® L(t), t €[0,1]
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be the Gaussian isoperimetric function.
The equivalent form of Theorem 2.1 is that for all Borel sets A in R™

Yt (A) = I(7a(4))- 2)

The equality in (2) holds for any affine halfspace.
For a probability measure u on R™ we may define the isoperimetric function
of p by
Is(p)(p) = inf{p*(A) : p(A) =p}, 0<p <1

Only few cases are known when one can determine exactly Is(x). For Gaussian
measures (2) states that Is(y,) = I.

Let us finish section 2 by an example of application of (1) (see [20, Lemma
3.1]).

Corollary 2.2 Let X be a centered Gaussian random vector in a separable
Banach space (F,| -||). Then for anyt >0

P(IX ~ Med(IX[)] > ) < 2(1 ~ ®(2)) < e /27,

where

o =sup{VE(z*(X))?: 2" € F*,|z*| < 1}.

3 Ehrhard’s Inequality

It is well known that the classical isoperimetric inequality for the Lebesgue
measure in R™ follows by the Brunn-Minkowski inequality (cf. [25]), which states
that for any Borel sets A and B in R™

vol,,(AA + (1 — \)B)) > (vol,(A))*(vol,,(B))' ™ for A € [0,1].

Gaussian measures satisfy the similar log-concavity property, that is the in-
equality

In(u(A + (1 - N)B)) = An(u(4)) + (1 - N In(u(B)), A€ [0,1]  (3)

holds for any Gaussian measure p on a separable Banach space F' and any Borel
sets A and B in F' (cf. [5]). However the log-concavity of the measure does not
imply the Gaussian isoperimetry.

In the early 80’s A. Ehrhard [9] gave a different proof of the isoperimetric
inequality (1) using a Gaussian symmetrization procedure similar to the Steiner
symmetrization. With the same symmetrization tool Ehrhard established a new
Brunn-Minkowski type inequality, stronger than (3), however only for convex
sets.

Theorem 3.1(Ehrhard’s inequality) If p is a centered Gaussian measure on
a separable Banach space F' and A, B are Borel sets in F', with at least one of
them convez, then

B (A + (1 - N)B)) > A6~ (u(A)) + (1 — )&~ (u(B)) for A € [0,1]. (4)
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For both sets A and B convex Ehrhard’s inequality was proved in [9]. The
generalization to the case when only one of the sets is convex was established
in [16].

It is not hard to see that Theorem 3.1 implies the isoperimetric inequality
(1). Indeed we have for any Borel set A in R

O (7 (40) = @7 (ra (AT A) + (1= N)((1 = X)7'tBy)))

A—1—

> A8 (1 (AT A)) + (1= M@ (1((1 = N)71eBE)) "5 87 (y(A)) + .

Conjecture 3.1 Inequality (4) holds for any Borel sets in F.

Ehrhard’s symmetrization procedure enables us to reduce Conjecture 3.1 to
the case F' = R and p = ;. We may also assume that A and B are finite unions
of intervals. At the moment the conjecture is known to hold when A is a union
of at most 3 intervals.

Ehrhard’s inequality has the following Prekopa-Leindler type functional ver-
sion. Suppose that A € (0,1) and f,g,h : R" — [0, 1] are such that

Vayern @ (R(Az + (1= N)y)) > A0 (f(2) + (1 — )@ ' (9(y))

then

q»—l(/w hdy) > ,\<1>—1(/R" Fdy) + (1 — /\)‘Ifl(/]k" gdv)- )

We use here the convention ®~1(0) = —oc0,®71(1) = 00 and —00 + 00 = —cc.
At the moment the above functional inequality is known to hold under the
additional assumption that at least one of the functions ®~1(f),®~!(g) is con-
vex. When one takes f = 14, g = lp and h = lyaya—x)p the inequality
(5) immediately implies (4). On the other hand if we put A = {(z,y) €
R"xR:y < & (f(z))} and B = {(z,9) € R" xR : y < & (g(x))} then
M+ (1 =NB C {(z,y) € R" xR : y < & !(h(z))}, so Ehrhard’s inequality
in R**! implies (5) in R™. It is easy to show the inductive step in the proof of
(5). Unfortunately the case n = 1 in the functional inequality seems to be much
more complicated than the case p = v, in Ehrhard’s inequality.

4 Bobkov’s Inequality

Isoperimetric inequality for the Lebesgue measure has an equivalent analytic
form - the Sobolev inequality (cf. [25]). L. Gross [10] showed that the Gaussian
measures 7, satisfy the logarithmic Sobolev inequality

/ 9% log g*dry, — / g% dryn log( / GPdy,) <2 / |Vg|*dyn (6)
R R" R~ Rn

for all smooth functions g : R™ — R. Using the so-called Herbst argument one
can show (cf. [19, Sect. 5.1]) that (6) implies the concentration inequality

Tu({h > / hdy, +t}) <e /2, >0
]Rn

1
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valid for all Lipschitz functions h : R®™ — R with the Lipschitz seminorm
[|2]|Lip = sup{|h(z) — h(y)| : z,y € R"} < 1. However the logarithmic Sobolev
inequality does not imply the isoperimetric inequality.

The formulation of the functional form of Gaussian isoperimetry was given
by S.G. Bobkov [2].

Theorem 4.1 For any locally Lipschitz function f : R™ — [0,1] and p = vy,

we have
1 s < [ VIOV (7)

Theorem 4.1 easily implies the isoperimetric inequality (2) by approximating
the indicator function 14 by Lipschitz functions. On the other hand if we apply
(2) to the set A = {(z,y) € R* x R : ®(y) < f(x)} in R"*! we get (7). It is
also not hard to derive the logarithmic Sobolev inequality (6) as a limit case of
Bobkov’s inequality (cf. [1]): one should use (7) for f = eg? (with g bounded)
and let € tend to 0 (I(t) ~ ty/2log(1/t) as t — 0+).

The crucial point of the inequality (7) is its tensorization property. To state
it precisely let us say that a measure g on R™ satisfies Bobkov’s inequality if
the inequality (7) holds for all locally Lipschitz functions f : R™ — [0,1]. Easy
argument shows that if p; are measures on R™, i = 1,2, that satisfy Bobkov’s
inequality then the measure p ® ps also satisfies Bobkov’s inequality.

The inequality (7) was proved by Bobkov in an elementary way, based on
the following ”two-point” inequality:

a-+
2

by 1 2 (0 =by 1\/ 24 (2 =0y
N NGy L) ®)
valid for all a,b € [0,1]. In fact the inequality (8) is equivalent to Bobkov’s
inequality for p = %6_1 -+ %61 and the discrete gradient instead of V f. Using
the tensorization property and the central limit theorem Bobkov deduces (in
the similar way as Gross in his proof of (6)) (7) from (8).

Using the co-area formula and Theorem 4.1 F. Barthe and M. Maurey [1]
gave interesting characterization of all absolutely continuous measures that sat-
isfy Bobkov’s inequality.

Theorem 4.2 Let ¢ > 0 and p be a Borel probability measure on the Rie-
mannian manifold M, absolutely continuous with respect to the Riemannian
volume. Then the following properties are equivalent
(i) For every measurable A C M, u*(A) > cI(u(A));

(i) For every locally Lipschitz function f : M — [0,1]

1(f saw < [ 1+ 51V s

Theorem 4.2 together with the tensorization property shows that if Is(y;) >
cl,i=1,2..., then also Is(p1 ® ... ® py) > ¢l. In general it is not known how
to estimate Is(u; ® ... ® py,) in terms of Is(p;) even in the case when all p;’s
are equal (another important special case of this problem was solved in [3]) .
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5 S-Inequality

In many problems arising in probability in Banach spaces one needs to es-
timate the measure of balls in some Banach space F. In particular one may
ask what is the slowest possible grow of the Gaussian measure of balls in F' or
more general of some fixed convex symmetric closed set under dilations. The
next theorem, proved by R. Latala and K. Oleszkiewicz [17], gives the positive
answer to the conjecture posed in an unpublished manuscript of L. A. Shepp
(1969).

Theorem 5.1(S-inequality) Let p be a centered Gaussian measure on a
separable Banach space F. If A is a symmetric, convex, closed subset of F' and
P C F is a symmetric strip, that is P = {x € F : |2*| < 1} for some z* € F*,
such that p(A) = p(P) then

u(tA) > p(tP) fort > 1
and
u(tA) < p(tP) for 0 <t <1.

A simple approximation argument shows that it is enough to prove Theorem
5.1 for ¥ = R™ and p = 7,. The case n < 3 was solved by V.N. Sudakov and
V.A. Zalgaller [30]. Under the additional assumptions of symmetry of A in R™
with respect to each coordinate, Theorem 5.1 was proved by S. Kwapien and J.
Sawa [15].

S-inequality can be equivalently expressed as

U (u(tA)) > 0 (u(A)) for t > 1,

where W1 denotes the inverse of

1 v 2
U(z) =n(—z,2) = Wir eV 2dy.

-

The crucial tool in the proof of S-inequality is the new modified isoperimetric
inequality. Let us first define for a convex symmetric set A in R™

w(A) = 2sup{r : B(0,r) C A}.

It is easy to see that for a symmetric strip P, w(P) is equal to the width of P
and for a symmetric convex set A

w(A) = inf{w(P) : A C P, P is a symmetric strip in R"}. 9)

Thus w(A) can be considered as the width of the set A. The following isoperimetric-
type theorem holds true.

Theorem 5.2 If v,,(A) = 7,(P), where P is a symmetric strip and A is a
convex symmetric set in R™, then

w(A)nf (4) > w(P)y; (P). (10)
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The main advantage of the inequality (10) is that one may apply here the
symmetrization procedure and reduce Theorem 5.2 to the similar statement for
2-dimensional convex sets symmetric with respect to some axis.

It is not hard to see that Theorem 5.2 implies Theorem 5.1. Indeed, let us
define for any measurable set B in R™, yp(t) = v, (¢tB) for t > 0. Taking the
derivatives of both sides of the inequalities in Theorem 5.1 one can see that it
is enough to show

Y (A4) = (P) = 7a(1) = 7p(1) (11)

for any symmetric convex closed set A and a symmetric strip P = {|z;]| <
p}. Let w = w(A), so B(0,w) C A. Then for ¢ > 1 and x € A we have
Bt 'z, (t — Dw/t) = t 'z + (1 —t71)B(0,w) C A, so B(z, (t — 1)w) C tA.
Hence A1y, C tA and

Ya(1) > wyt (A) = w(A)y (A).

However for the strip P

vp(1) = \,/gﬂf"_”z/2 = w(P)y, (P)

and the inequality (11) follows by Theorem 5.2.

It is not clear if the convexity assumption for the set A in Theorem 5.2 is
necessary (obviously w(A) for nonconvex symmetric sets A should be defined
by (9)). One may also ask if the symmetry assumption can be released (with
the suitable modification of the definition of the width for nonsymmetric sets).
Also functional versions of Theorems 5.1 and 5.2 are not known.

As was noticed by S. Szarek S-inequality implies the best constants in com-
parison of moments of Gaussian vectors (cf. [17]).

Corollary 5.3 If X is a centered Gaussian vector in a separable Banach
space (F,| -||) then

(EIX ")/ < (B X[/ for any p > q >0,
Cq

where 1 +1

¢p = (Blgu[")/7 = vo(—=1(EL2))/r,

» = Bl = Va(Zr(P30)

Another interesting problem connected with the S-inequality was recently

posed by W. Banaszczyk (private communication): Is it true that under the
assumptions of Theorem 5.1

p(sM A A) > p(sA) u(tA) Y, A e 0,1] (12)

for any closed convex symmetric set A in F and s,¢t > 0?7 Combining the
facts that the function ®~'(u(tA)) is concave (Theorem 3.1) and the function
1~ (u(tA)) is nondecreasing (Theorem 5.1) one can show that (12) holds if
u(sA), u(tA) > ¢, where ¢ < 0.85 is some absolute constant.
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It is of interest if Theorem 5.1 can be extended to the more general class of
measures. The following conjecture seems reasonable.

Conjecture 5.1 Let v be a rotationally invariant measure on R™, absolutely
continuous with respect to the Lebesque measure with the density of the form
f(|z|) for some nondecreasing function f : Ry — [0,00). Then for any convex
symmetric set A in R™ and any symmetric strip P in R™ such that v(A) = v(P)
the inequality v(ANA) > v(AP) is satisfied for X > 1.

To show Conjecture 5.1 it is enough to establish the following conjecture
concerning the volumes of the convex hulls of symmetric sets on the n — 1-
dimensional unit sphere S™~!.

Conjecture 5.2 Let 0,1 be a Haar measure on S, A be a symmetric
subset of S"~! and P = {x € S"7! : || < t} be a symmetric strip on S"~!
such that oy,—1(A) = op—1(P), then vol,(conv(A)) > vol, (conv(P)).

It is known that both conjectures hold for n < 3 (cf. [30]).

6 Correlation Conjecture

The following conjecture is an object of intensive efforts of many probabilists
since more then 30 years.

Conjecture 6.1 If i is a centered Gaussian measure on a separable Banach
space F' then

(AN B) > p(A)u(B) (13)

for all convex symmetric sets A, B in F.

Various equivalent formulations of Conjecture 6.1 and history of the problem
can be found in [27]. Standard approximation argument shows that it is enough
to show (13) for F = R™ and g = 7y,. For n = 2 the solution was given by L.
Pitt [26], for n > 3 the conjecture remains unsettled, but a variety of special
results are known. Borell (8] established (13) for sets A, B in a certain class of
(not necessary convex) sets in R, which for n = 2 includes all symmetric sets.
A special case of (13), when one of the sets A, B is a symmetric strip of the form
{z € F : |z*(z)| < 1} for some z* € F* was proved independently by C. G.
Khatri [14] and Z. Sidak [28] (see [11] for an extension to elliptically contoured
distributions and [31] for the case when one of the sets is a nonsymmetric strip).
Recently, the Khatri-Sidék result has been generalized by G. Hargé [12] to the
case when one of the sets is a symmetric ellipsoid.

Theorem 6.1 If i is a centered Gaussian measure on R™, A is a symmetric
convex set in R™ and B is a symmetric ellipsoid, that is the set of the form
B = {z € R": (Cz,z) < 1} for some symmetric nonnegative matriz C, then

(AN B) > p(A)u(B).

The following weaker form of (13)

wWANDB) > p(A)p(vV1—-A2B), 0<A <1
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was established for A = % in [27] and for general A in [21]. The Khatri-Siddk
result and the above inequality turn out to be very useful in the study of the
so-called small ball probabilities for Gaussian processes (see [22] for a survey of
results in this direction).

The correlation conjecture has the following functional form:

/fydu > /fdu/gdu (14)

for all nonnegative even functions f, g such that the sets {f > ¢} and {g > t}
are convex for all £ > 0. Y. Hu [13] showed that the inequality (14) (that we
would like to have for log-concave functions) is valid for even convex functions

f,9 € L*(F, ).
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