
Applications of Fourier Analysis to the Study of Analog, Discrete, and Digital Signals1

Main notations used below

• N = {1, 2, . . .}, Z = {0,±1,±2, . . .}, Z+ = {0, 1, 2, . . .}, R = (−∞,+∞);
• i =

√
−1, Re is the real part of a complex number, Im is the imaginary part of a complex number;

• 1A: indicator function of the set or condition A, so that 1A = 1 if you are in the set A or condition A holds
and 1A = 0 otherwise.

Analog signal f = f(t), f ∈ (A,B) ⊆ R, t ∈ (a, b) ⊆ R. In other words, we have a “continuum” of possible
values for both the domain and the range; note that f does not have to be continuous as a function of t. As we
know, such signals are represented by Fourier series (if the interval (a, b) is finite) or Fourier transform (if at least
one end of the interval (a, b) is infinite).

An application to ODEs: Forced oscillations. Let f = f(t) be periodic with period T = 2π/ω and consider
the equation

y′′(t) + γy′(t) + ω2
0 y(t) = f(t), ω0 > 0, γ ≥ 0.

Recall that this equation models basic mechanical and electrical systems exhibiting (damped) oscillations; γ describes
damping.

Writing

f(t) =

∞∑
k=−∞

cke
ikωt, y(t) =

∞∑
k=−∞

yke
ikωt

and substituting into the equation, we find yk(−k2ω2 + iγkω + ω2
0) = fk or

yk =
fk

(ω2
0 − k2ω2) + iγk

.

In other words, we found a particular solution of the equation:

(1) y(t) =

+∞∑
k=−∞

fk
(ω2

0 − k2ω2) + iγk
eikωt.

This is great as long as we are not dividing by zero, that is

(2) (ω2
0 − k2ω2) + iγk ̸= 0, k ∈ Z.

If γ ̸= 0, then (2) always holds. Resonance happens exactly when (2) fails, that is, if

γ = 0 AND ω0 = k0ω

for some k0 ∈ N. In that case, the equation does not have a particular solution in the form (1); instead, the particular
solution becomes unbounded as t → +∞.

If γ > 0 but small, the solution, while staying bounded, can still be [arbitrarily] large. For example, take the input
a 2π-periodic rectangular wave

f(t) =
4

π

∞∑
k=0

sin(2k + 1)t

2k + 1
,

that is, f(t) = π on (0, π) and f(t) = −1 on (π, 2π). Then ω = 1 and, with sin kt = Im
(
eikt
)
, equality (1) becomes

y(t) =

∞∑
k=0

Yk(t),

where

(3) Yk(t) = Im

(
4ei(2k+1)t

π
(
(ω2

0 − (2k + 1)2) + iγ(2k + 1)
)) .

If ω0 = 2ℓ+ 1 for some ℓ ∈ Z+, then [by (3), with ω = 1, k = 2ℓ+ 1 = ω0, and fk = 4/(π(2ℓ+ 1))]

Y2ℓ+1(t) = Im

(
ei(2ℓ+1)t

iγ(2ℓ+ 1)2

)
= −cos(2ℓ+ 1)t

γ(2ℓ+ 1)2
.

As a numerical example, take ω0 = 3 and γ = 0.01. Then Y3(t) ≈ −14 cos(3t). Roughly speaking, the input gets
amplified by a factor of 10, so the system might still break down.
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Discrete signal fk, k ∈ K ⊆ Z, each fk ∈ (A,B) ⊆ R: we discretize the domain of f , but not the range. In
other words, we have at most countable many values of the signal, but each value still has a continuum of options.
A typical scenario is fk = f(k△t): samples of a continuous signal f with constant step △t.

The canonical discretization of a signal f = f(t) is

(4) fd(t) = △t

+∞∑
k=−∞

f(k△t)δ(t− k△t);

as usual δ is the Dirac delta function. Note that (4) can be written as

(5) fd(t) = △t
(
f ∗
⊔⊔

△t

)
(t),

and the (generalized) function
⊔⊔

△t(t) =
∑∞

k=−∞ δ(t − k△t) is called the Dirac comb. The extra factor △t in

(4) and (5) is necessary to make the units agree: if we think of t as a quantity having unites of time, then the
(physical) definition the Dirac delta function implies that δ has the units of inverse time. In this connection, note
that, assuming the original signal f has no units, the Fourier coefficients ck(f) have no units either [in particular, if
the period is 2π, then π has to come with units of time]; the Fourier transform has units of time: check it out, in
particular, in the context of Parseval and Plancherel equalities.

The (discrete) signal fd is represented by the Fourier transform as follows.
Theorem 1. Under suitable conditions,

(6) f̂d(ω) =

+∞∑
k=−∞

f̂

(
ω − 2π

△t
k

)
.

The proof relies on another useful result.
Theorem 2. [Poisson Summation Formula] Under suitable conditions on the function h,

(7)

+∞∑
k=−∞

h(2kL) =

√
2π

2L

+∞∑
n=−∞

ĥ
(π
L
n
)

for every L > 0.
Proof of Theorem 2. Consider the function

gL(x) =

+∞∑
k=−∞

h(x+ 2kL).

Then gL(x) = gL(x + 2kL) for all k ∈ Z (that is, gL is periodic with period 2L), and, under suitable conditions,
SgL(0) = gL(0). On the other hand, direct computations show that

cn(gL) =

√
2π

2L
ĥ
(π
L
n
)
,

and the result follows. �
The following are immediate consequences of (7):

• With θ > 0, L = π
√
θ and h(t) = e−t2 , (7) becomes the θ formula

+∞∑
k=−∞

e−4θπ2n2

=
1√
2πθ

+∞∑
n=−∞

e−n2/(4θ).

This formula helps with approximations of the sum
∑+∞

k=−∞ e−ak2

for various values of a > 0, which is
helpful, for example, in statistics, for example, because of the Kolmogorov-Smirnov test.

• With s ∈ R, h(t) = δ(t− s), and L = △t/2, we get an alternative expression for Dirac’s comb:

+∞∑
k=−∞

δ(s− k△t) =
1

△t

+∞∑
n=−∞

exp
(
− is(2π/△t)n

)
.

Proof of Theorem 1 using Theorem 2. Apply F to both sides of (4) fixing ω = ω0. The result is

(8) f̂d(ω0) =
△t√
2π

+∞∑
k=−∞

f(k△t)e−iω0k△t
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Now apply (7) with h(t) = f(t)e−iω0t and 2L = △t. The result is

f̂d(ω0) =

+∞∑
k=−∞

f̂

(
ω0 +

2π

△t
k

)
,

which, upon a brief inspection, is the same as (6). �

Theorem 2 has various ramifications, of various degree of importance. Here are some, in no particular order:

(1) The function f̂d [or some multiple of it] is called the Discrete Time Fourier Transform (DTFT) of the
(discretized) signal f .

(2) The right-hand side of (6) illustrates overlapping (or aliasing) of the spectrum as a result of discretization,

and, consequently, impossibility of a perfect recovery of the signal from the samples unless |f̂(ω)| = 0 for
|ω| > ω0 and we take △t ≤ π

ω0
(sampling at least at twice the rate of the highest frequency) which takes us

back to the sampling theorem.

(3) The function f̂d is periodic with period 2π/△t. Representing f̂d as a Fourier series, we can get some other
interesting identities, including [under the right conditions] the sampling theorem.

(4) No physical signal f can have |f̂(ω)| = 0 for |ω| > ω0. More precisely, if a signal f has compact support:

there exists a t0 such that |f(t)| = 0 for all |t| > t0, then the support of f̂ is not compact: for every

ω0 > 0 there exists an ω1 with |ω1| > ω0 and |f̂(ω1)| > 0. Conversely, if f̂ has compact support (as

required in the sampling theorem), then f does not. An intuitive way to see it is to notice that if f̂

has compact support, then f̂(ω) = f̂(ω)1|ω|<ω0
. Taking the inverse Fourier transform we conclude that

f(t) = (f ∗ g)(t), where g(t) ∼ sin(ω0t)/t [give or take a constant factor], and g [clearly] does not have
compact support. At deeper level, this observation takes you to the Heisenberg uncertainty principle

[the more concentrate the signal, the more spread out the Fourier transform] and the Paley-Wiener theorem

[what kind of (generalized) functions have compactly supported Fourier transform].
(5) If we put z = eiω0△t in (8), then the right-hand side becomes

F (z) =
△t√
2π

+∞∑
k=−∞

f(k△t)z−k,

which, up to the
√
2π factor, is called the z transform of the discrete signal fd. If the signal is causal, that

is, f(t) = 0 for t < 0 [equivalently, f(k△t) = 0, k < 0], then we get a more familiar expression

F (z) =
△t√
2π

+∞∑
k=0

f(k△t)z−k.

Digital signal Xk ∈ {x1, . . . , xM}, with k ∈ {k1, . . . , kN}. In other words, we discretize both the domain and the
range of f , and get at most MN numbers. Note that in many applications, you can choose M [“number of bits”]
and N [number of samples].

With no loss of generality, we assume that k ∈ {0, 1, . . . , N − 1}. For the discussion that follows, it does not really
matter whether the set of values of Xk is finite or not.

The main relations are as follows:
N−1∑
n=0

e2πin(m−k)/N =

{
N, m = k + ℓN, ℓ ∈ Z
0, otherwise;

(9)

Xk =

N−1∑
n=0

Fne
2πikn/N , where(10)

Fn =

N−1∑
k=0

Xke
−2πikn/N .(11)

All three are verified by direct computation.
The collection of numbers Fn, n = 0, 1, . . . , N − 1 is called the discrete Fourier transform [or DFT] of the

signal X = Xk, k = 0, . . . , N − 1. The main point is that, when the number N has sufficiently many divisors [for
example, N = 2r for some integer r] then special algebraic properties of the complex exponentials make it possible
to organize the computations of Fn in such as way that the total number of operations required to compute all N
numbers F0, . . . , FN−1 is (much) smaller than the N2 required by the straightforward computation. The “optimal”
bound of order N logN is achieved exactly when N = 2r. This is the idea behind the fast Fourier transform
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[FFT], which is an algorithm [probably more like a family of algorithms] for computing DFT. Even without the
details [which are rather long and eventually turn into a trade secret], there are several points to keep in mind:

• The first known appearance of FFT goes back to the early 1800’s, when Gauss used it to simplify computations
related to his tracking of a particular comet [while at that, he also introduced many other fundamental
concepts, such as the normal distribution and the method of least squares; as always, fascinating history].
The result [about FFT] was eventually published in 1865 [10 years after Gauss died], but remained unnoticed
for another 100 years, until AFTER Cooley and Tukey re-discovered it on their own.

• An operation in this context is one addition AND one multiplication.
• The word order in the above discussion means that the number of operations required by FFT is bounded
from above by CN logN for some “absolute” number C. In other words, C stays bounded as N goes to
infinity, but the actual value of C might depend on the “details” [such as whether you have N = 2r or
N = 4r]. Because of that, the base of the log does not matter. These considerations also lead to whole new
concept of computational complexity of an algorithm.

• The ideas of FFT are used in the Strassen algorithm (and many similar algorithms) for multiplying N×N
matrices using fewer than the “direct” N3 operations [here, “fewer” means order of Nr with r < 3], as well
as in the Karatsuba algorithm for multiplying two N -digit numbers using fewer than the “direct” N2

single-digit multiplications [here, “fewer” means order of Nr with r < 2].
• The bottom line: because DFT of convolution is the product of DFT-s, and the convolution is a fundamental
operation in engineering, FFT makes it possible to compute convolutions using (order of) N logN operations
by computing DFT-s of the signals using FFT, multiplying the results [multiplication only takesN operations]
and then using FFT again to compute the inverse DFT. As always, full details can be a trade secret.

Linear systems and stability

Recall that, for a linear system of ODEs with constant coefficients,

X ′(t) = AX(t), t ≥ 0,

[X is a vector, A is a (square) matrix] the “elementary building blocks” of the solution are heλt for some vector h
and some (complex) number λ. Substitution in the equation show that the equality

λh = Ah

must hold, that is, h is an eigenvector of A and λ is the corresponding eigenvalue. The system is (asymptotically)
stable if (and only if) all eigenvalues of A are in the left half-plane [strictly to the left of the imaginary axis in the
complex plane]. Recall that neutrally stable system [when at least one eigenvalue has zero real part] can blow up
with suitable input: think y′′(t) + y(t) = sin t; this is why we indeed want asymptotic stability [and this is why, for
engineering and other applications, stability usually means bounded output for every bounded input]. When
done via the Laplace transform, the analysis leads to the concept of the transfer function, and the fundamental
result in this connection is that a system is stable if and only if the poles of the transfer function have negative real
parts.

Similarly, in the case of discrete-time [and digital] systems, the starting point is the system of finite difference

equations Xk+1 = AXk, k ≥ 0, with vectors Xk and a square matrix A. Now we look for solutions in the form
rkh, with a vector h and number r. Substitution shows that the equality rh = Ah must hold, that is, r has to be an
eigenvalue of the matrix A. Just as in the case of continuous time, the number r = a + ib = |r|eiθ can be complex.
Now, to have (asymptotic) stability, we need limk→∞ |r|k = 0, that is, |r| < 1, that is, all eigenvalues of A must be
strictly inside the unit disk in the complex plane. When done via the z transform, the analysis leads to the concept
of the [discrete time] transfer function, and the fundamental result in this connection is that a system is stable if
and only if all poles of the transfer function are strictly inside the unit disk in the complex plane.

Keep in mind that some authors, in an attempt to further confuse the reader [or because of the conventions in that
particular field] write the z transform as

∑
k≥0 akz

k [as opposed to
∑

k≥0 akz
−k], and then stability means having

the poles strictly outside of the unit disk.


