A Summary of Time-Homogeneous Finite State Markov Sequences.

Main objects.

State Space $\mathcal{S}=\left\{a_{1}, \ldots, a_{N}\right\} ;$
The Sequence $\mathbb{X}=\left(X_{n}, n \geq 0\right), X_{n} \in \mathcal{S}$;
The Tail sigma algebra of $\mathbb{X}: \mathcal{I}=\bigcap_{n \geq 0} \sigma\left(X_{k}, k \geq n+1\right)$;
(One Step) Transition Probability Matrix $P=\left(p_{i j}, i, j=1, \ldots, N\right): p_{i j}=\mathbb{P}\left(X_{n+1}=a_{j} \mid X_{n}=a_{i}\right)$; m Step Transition Probability Matrix $P^{(m)}=\left(p_{i j}^{(m)}, i, j=1, \ldots, N\right): p_{i j}^{(m)}=\mathbb{P}\left(X_{n+m}=a_{j} \mid X_{n}=a_{i}\right) ; P^{(1)}=P$.

Basic results.

(1) Markov Property: $\mathbb{P}\left(X_{n}=a_{i} \mid X_{n-1}, \ldots, X_{0}\right)=\mathbb{P}\left(X_{n}=a_{i} \mid X_{n-1}\right), n \geq 1$.
(2) Transition probability matrices are stochastic: $p_{i j}^{(m)} \geq 0, \sum_{j=1}^{N} p_{i j}^{(m)}=1, i=1, \ldots, N, m=$ $1,2, \ldots$
(3) Chapman-Kolmogorov equation: $P^{(m)}=P^{m}$.

Proof. Start with $m=2$:

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=a_{j} \mid X_{0}=a_{j}\right)=\sum_{\ell=1}^{N} \mathbb{P}\left(X_{2}=a_{j}, X_{1}=a_{\ell} \mid X_{0}=a_{i}\right) \\
& =\sum_{\ell=1}^{N} \mathbb{P}\left(X_{2}=a_{j} \mid X_{1}=a_{\ell}, X_{0}=a_{i}\right) \mathbb{P}\left(X_{1}=a_{\ell}, X_{0}=a_{i}\right) \\
& =\sum_{\ell=1}^{N} \mathbb{P}\left(X_{2}=a_{j} \mid X_{1}=a_{\ell}\right) \mathbb{P}\left(X_{1}=a_{\ell}, X_{0}=a_{i}\right)=\sum_{\ell=1}^{N} p_{i \ell} p_{\ell j}
\end{aligned}
$$

where the third equality is a particular case of

$$
\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid B \cap C) \mathbb{P}(B \mid C)
$$

and the fourth equality is the Markov property. The general m is similar.
(4) Distribution of X_{n} : if $\mu_{i}=\mathbb{P}\left(X_{0}=a_{i}\right), i=1, \ldots, N$, then

$$
\mathbb{P}\left(X_{n}=a_{j}\right)=\sum_{i=1}^{N} \mu_{i} p_{i j}^{(n)}
$$

(5) Linear Model Representation: If \mathbf{X}_{n} is a column vector in \mathbb{R}^{N} with component number i equal to $I\left(X_{n}=a_{i}\right)$, then

$$
\mathbf{X}_{n+1}=P^{\top} \mathbf{X}_{n}+\mathbf{V}_{n+1}
$$

where P^{\top} is the transpose of the matrix P and the random variables $\mathbf{V}_{n}, n \geq 1$, defined by

$$
\mathbf{V}_{n}=\mathbf{X}_{n}-P^{\top} \mathbf{X}_{n-1}
$$

have zero mean [because, by construction, $\mathbb{E}\left(\mathbf{X}_{n} \mid \mathbf{X}_{n-1}\right)=P^{\top} \mathbf{X}_{n-1}$], and are uncorrelated: $\mathbb{E} \mathbf{V}_{n}^{\top} \mathbf{V}_{m}$ is the zero matrix for $m \neq n$ [similarly, by conditioning].
(6) Recursive generation of a sample path of \mathbb{X} : on step n, generate a random variable U that is uniform on $(0,1)$ and, if $X_{n}=a_{i}$, then set $X_{n+1}=a_{1}$ if $U \leq p_{i 1}, X_{n+1}=a_{2}$ if $p_{i 1}<U \leq p_{i 1}+p_{i 2}$, etc.
(7) Exponential (Geometric) Ergodicity: If there exists an ℓ such that $p_{i j}^{(\ell)}>0$ for all $i, j=1, \ldots, N$, then there exists a unique probability distribution $\pi=\left(\pi_{1}, \ldots, \pi_{N}\right)$ on \mathcal{S} and numbers $C>0$ and $r \in(0,1)$ with the following properties:

- $\pi_{i}>0$ for all $i=1, \ldots, N$
- π_{i} is the almost-sure limit of $\frac{1}{n} \sum_{k=1}^{n} \mathbb{I}\left(X_{k}=a_{i}\right)$ as $n \rightarrow+\infty$;
- $1 / \pi_{i}$ is the average return time to a_{i} if $X_{0}=a_{i}$;
- $\pi_{j}=\sum_{i=1}^{N} \pi_{i} p_{i j}$ (invariance of π : if $\mathbb{P}\left(X_{0}=a_{i}\right)=\pi_{i}$, then $\mathbb{P}\left(X_{n}=a_{i}\right)=\pi_{i}$ for all $n>0$; also, as a row vector, π is the left eigenvector of P);
- The distribution of X_{n} converges to π exponentially quickly regardless of the initial distribution of X_{0} :

$$
\begin{equation*}
\max _{i, j}\left|\pi_{j}-p_{i j}^{(n)}\right| \leq C r^{n}, \quad \max _{j}\left|\sum_{i=1}^{N} \mu_{i} p_{i j}^{(n)}-\pi_{j}\right|=\max _{j}\left|\sum_{i=1}^{N} \mu_{i}\left(p_{i j}^{(n)}-\pi_{j}\right)\right| \leq C r^{n} \tag{1}
\end{equation*}
$$

An outline of the proof. Taking for granted that π exists, let $\delta>0$ be such that $p_{i j}^{(\ell)}>\delta \pi_{j}$ for all i. Take $\theta=1-\delta$ and define Q by $P^{\ell}=(1-\theta) \Pi+\theta Q$, where the matrix Π has all rows equal to π. Next, argue by induction that

$$
P^{n \ell}=\left(1-\theta^{n}\right) \Pi+\theta^{n} Q^{n}
$$

so that, for $m \geq 1$,

$$
P^{n \ell+m}-\Pi=\theta^{n}\left(Q^{n} P^{m}-\Pi\right),
$$

from which (1) follows with $r=\theta^{1 / \ell}$ and $C=1 / \theta$.

Further Definitions.

(1) Chain is an indication that the state space is countable; Sequence is an indication that the time is discrete.
(2) Irreducible Markov chain \mathbb{X} : for every i, j there is an $n \geq 1$ such that $p_{i j}^{(n)}>0$ (each state is accessible from every other state);
(3) The Period d_{i} of the state a_{i} is the greatest common divisor of the numbers n for which $p_{i i}^{n}>0$. Aperiodic state has $d_{i}=1$.
(4) Total variation distance between two probability distributions μ and ν on \mathcal{S} is s

$$
\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \sum_{i=1}^{N}\left|\mu_{i}-\nu_{i}\right| .
$$

Further Results.

(1) A state a_{i} is aperiodic if and only if there exists an $n_{0} \geq 1$ such that, for all $n>n_{0}, p_{i i}^{(n)}>0$.
(2) All states in an irreducible chain have the same period.
(3) If the chain is irreducible and aperiodic, then there exists an m such that $p_{i j}^{(m)}>0$ for all $i, j=1, \ldots, N$. [Indeed, $p_{i j}^{(m+q+r)} \geq p_{i k}^{(m)} p_{k k}^{(q)} p_{k j}^{(r)}$.]
(4) A stronger version of (1) is

$$
\left\|\pi-p_{i \bullet}^{(n)}\right\|_{\mathrm{TV}} \leq C r^{n}
$$

The fundamental question: given the chain \mathbb{X}, how to find the r from (1).
Further developments: Mixing time and cut-off phenomena; Metropolis-Hastings algorithm and MCMC; Hidden Markov Models (HMM) and the estimation algorithms of Viterbi and Baum-Welch.
The reference: D. A. Levin and Y. Peres. Markov chains and mixing times, Second edition. American Mathematical Society, Providence, RI, 2017. xvi+447 pp. ISBN: 978-1-4704-2962-1.

The bottom line: A nice discrete time Markov chain is time-homogeneous, finite state, irreducible and aperiodic; for a time-homogenous finite-state Markov chain \mathbb{X} with transition matrix P, the following three properties are equivalent: (a) all entries of the matrix P^{n} are non-zero for some $n \geq 1$; (b) as $n \rightarrow \infty$, every row of P^{n} converges to the same (unique) invariant distribution π for \mathbb{X} and $\pi_{i}>0$ for all $i ;(\mathrm{c}) \mathbb{X}$ is irreducible and aperiodic.

Beyond the nice setting.

Starting point: a discrete-time, time-homogenous Markov chain $\mathbb{X}=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ with a countable state space $\mathcal{S}=\left\{a_{1}, a_{2}, \ldots\right\}$ and transition matrix $P=\left(p_{i j}, i, j \geq 1\right) ; p_{i j}=\mathbb{P}\left(X_{n+1}=a_{j} \mid X_{n}=a_{i}\right)$, and, for $m \geq 2$, $P^{m}=\left(p_{i j}^{(m)}, i, j \geq 1\right), p_{i j}^{(m)}=\mathbb{P}\left(X_{n+m}=a_{j} \mid X_{n}=a_{i}\right)$, with conventions $p_{i i}^{(0)}=1, p_{i j}^{(1)}=p_{i j}$.

Definitions based on the arithmetic properties of P.

(1) State a_{i} is ABSORBING if $p_{i i}=1$;
(2) State a_{j} is ACCESSIBLE from $a_{i}, i \neq j$ if $p_{i j}^{(m)}>0$ for some $m \geq 1$ [by convention, every state is accessible from itself];
(3) Communicating states a_{i} and a_{j} are mutually accessible: $p_{i j}^{\left(n_{1}\right)}>0, p_{j i}^{\left(n_{2}\right)}>0$ for some $n_{1}, n_{2} \geq 0$ [by convention, each state communicates with itself, making communication an equivalence relation];
(4) State a_{j} is ESSENTIAL if it is absorbing or if it communicates with every state that is accessible from it: either $p_{j j}=1$ or, for every $i \neq j$, if $p_{j i}^{(n)}>0$ for some n then $p_{i j}^{(m)}>0$ for some m;
(5) Inessential states are those that are not essential: \mathbb{X} eventually gets out of an inessential state but never comes back to it;
(6) Irreducible class is an equivalence class of (essential) communicating states;
(7) The Period d_{i} of the state a_{i} is the greatest common divisor of the numbers n for which $p_{i i}^{n}>0$;
(8) Irreducible chain has only one irreducible class;
(9) Aperiodic chain has all states with period 1.
(10) An invariant (Stationary) measure for P (or for \mathbb{X}) is a positive measure μ on \mathcal{S} such that $\sum_{i} \mu_{i} p_{i j}=\mu_{j}$, with $\mu_{i}=\mu\left(a_{i}\right)$. Note that $\mu(\mathcal{S})=+\infty$ is allowed. If $\mu(\mathcal{S})<+\infty$ and $\pi_{i}=\mu_{i} / \mu(\mathcal{S})$, then π is the invariant (stationary) Distribution for P.
(11) An invariant measure μ for P is called REVERSIBLE if

$$
\begin{equation*}
\mu_{i} p_{i j}=\mu_{j} p_{j i} \quad \text { for all } i, j . \tag{2}
\end{equation*}
$$

Note that a measure satisfying (2) must be invariant: just sum up both sides over i (or over j).
(12) A function $f: \mathcal{S} \rightarrow \mathbb{R}$ is called [SUB](SUPER)-HARMONIC if $f\left(a_{i}\right)[\leq](\geq)=\sum_{j} p_{i j} f\left(a_{j}\right)$.

Definitions based on the asymptotic properties of P^{n} as $n \rightarrow \infty$.
(1) State a_{i} is RECURRENT if $\sum_{n \geq 1} p_{i i}^{(n)}=+\infty$ and is TRANSIENT otherwise;
(2) State a_{i} is Positive RECURRENT if

$$
\sum_{n=1}^{\infty} n f_{i}^{(n)}<\infty, \quad f_{i}^{(1)}=p_{i i}, \quad p_{i i}^{(n)}=\sum_{k=1}^{n} f_{i}^{(k)} p_{i i}^{(n-k)}, n \geq 2 .
$$

(3) State a_{i} is NULL RECURRENT if it is recurrent but not positive recurrent;
(4) A chain \mathbb{X} is (positive) recurrent if all the states are (positive) recurrent;
(5) A chain \mathbb{X} is ERGODIC if, as $n \rightarrow \infty$, all rows of P^{n} converge to the (unique) invariant distribution π for P and $\pi_{i}>0$ for all i.

Basic facts:

(1) If the state space has N elements, then \mathbb{X} is irreducible if and only if the matrix $\mathbb{I}_{N \times N}+P+P^{2}+\cdots+P^{N}$ has all entries strictly positive;
(2) All states within one irreducible class have the same period, leading to a cycle, or cyclic, decomposition of the class;
(3) If a_{i} is recurrent and a_{j} is accessible from a_{i}, then a_{j} is also recurrent and communicates with a_{i};
(4) With $\tau_{i}=\inf \left\{n \geq 1: X_{n}=a_{i}\right\}$, we have

$$
f_{i}^{(k)}=\mathbb{P}\left(\tau_{i}=k \mid X_{0}=a_{i}\right),
$$

so that

$$
\mathbb{P}\left(\tau_{i}<+\infty \mid X_{0}=a_{i}\right)=\sum_{k=1}^{\infty} f_{i}^{(k)}<\infty, \sum_{n \geq 1} p_{i i}^{(n)}=\mathbb{P}\left(\tau_{i}<+\infty \mid X_{0}=a_{i}\right)\left(1+\sum_{n \geq 1} p_{i i}^{(n)}\right)
$$

and the state a_{i} is

- transient if and only if $\mathbb{P}\left(\tau_{i}=+\infty \mid X_{0}=a_{i}\right)>0$;
- recurrent if and only $\mathbb{P}\left(\tau_{i}<+\infty \mid X_{0}=a_{i}\right)=1$,
- positive recurrent if and only if $\mathbb{E}\left(\tau_{i} \mid X_{0}=a_{i}\right)<\infty$;
(5) Inessential states are transient, and, if the state space is finite, then all transient states are inessential (that is, in a finite state Markov sequence, a state is (positive) recurrent if and only if it is essential);
(6) If a_{j} is accessible from $a_{i}, i \neq j$, and a_{j} is absorbing, then a_{i} is inessential;
(7) In terminology of graph theory, a chain on a graph is
- irreducible if and only if the graph is connected;
- aperiodic and irreducible if and only if the graph is non-bipartite;

Further facts.

(1) If a_{i} is a recurrent state and $\tau_{i}=\inf \left\{n \geq 1: X_{n}=a_{i}\right\}$, then

$$
\mu_{j}^{(i)}=\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n}=a_{j}, \tau_{i}>n \mid X_{0}=a_{i}\right)
$$

defines an invariant measure for P; the measure is finite if a_{i} is positive recurrent.
(2) If the chain is irreducible, then the following three statements are equivalent: (a) at least one state is positive recurrent; (b) all states are positive recurrent; (c) an invariant distribution exists.
(3) If π is an invariant distribution for P and $\pi\left(a_{i}\right)>0$, then a_{i} is recurrent;
(4) If \mathbb{X} is irreducible, aperiodic, and recurrent, then the tail sigma algebra of \mathbb{X} is trivial;
(5) If \mathbb{X} is irreducible and recurrent, and all states have period $d>1$, then the tail sigma algebra of \mathbb{X} is determined by the cycle decomposition of the state space \mathcal{S} and is non-trivial.
(6) A function $f: \mathcal{S} \rightarrow \mathbb{R}$ is [sub](super)-harmonic if and only if the sequence $f\left(X_{n}\right), n \geq 0$ is a [sub](super)martingale with respect to the filtration generated by \mathbb{X}. An irreducible \mathbb{X} is recurrent if and only if every non-negative super-harmonic function is constant.

Examples

(1) Simple symmetric random walk on the line with arbitrary starting point is irreducible; each state is null recurrent and has period 2; the tail sigma algebra consists of four sets.
(2) Ehrenfest chain has $\mathcal{S}=\{0,1, \ldots, N\}$,

$$
p_{i j}= \begin{cases}j / N, & j=i-1, \\ (N-j) / N, & j=i+1, \\ 0, & \text { otherwise }\end{cases}
$$

and, even though all states have period 2, there is a unique invariant distribution π with $\pi_{k}=2^{-N}\binom{N}{k}$. Still, the chain is not ergodic in the sense that the rows of P^{n} do not converge to π as $n \rightarrow \infty$.
(3) A birth and death chain with $\mathcal{S}=\{0,1,2 \ldots\}, p_{00}=2 / 3, p_{01}=1 / 3$,

$$
p_{i j}= \begin{cases}2 / 3, & j=i-1 \\ 1 / 3, & j=i+1 \\ 0, & \text { otherwise }\end{cases}
$$

is reversible, with invariant distribution $\pi_{k}=2^{-k-1}, k=0,1,2, \ldots$.
(4) $M / G / 1$ QUEUE with arrival intensity λ and service time cdf F : if $a_{k}=\frac{1}{k!} \int_{0}^{+\infty} e^{-\lambda t}(\lambda t)^{k} d F(t)$ [probability that k customers arrive while one is served], then the numbers of customers X_{n} in the buffer at the time n-th customer enters service is a Markov chain with

$$
p_{i j}= \begin{cases}a_{0}+a_{1}, & i=j=0 \\ a_{k}, & j=i-1+k \text { and } i \geq 1 \text { or } k>1, \\ 0, & \text { otherwise } .\end{cases}
$$

With $\nu=\sum_{k \geq 1} k a_{k}$ [average number of new customers arriving while one is served], the chain is transient if $\mu>1$, null recurrent if $\mu=1$, and positive recurrent, with a unique invariant distribution, if $\mu<1$.
(5) A particular example of an $M / M / \infty$ queve is $X_{n+1}=\sum_{m=1}^{X_{n}} \xi_{m n}+Y_{n}$, where $\xi_{m n}$ are iid Bernoulli with probability of success $p \in(0,1)$ [representing the customers still served at time $n+1]$ and Y_{n} are iid (also independent of ξ) Poisson random variables with mean λ [representing new customers arriving in one time unit], then the chain $\left(X_{n}\right), n \geq 1$, is ergodic, with the unique invariant distribution equal to Poisson with mean $\lambda /(1-p)$.
(6) Gambler's ruin model has $a_{i}=i, i=0, \ldots, N$, with absorbing states a_{0} and a_{N} and

$$
p_{i j}= \begin{cases}p, & j=i+1, i<N[\text { winning one unit] } \\ q=1-p, & j=i-1, i>0 \text { [losing one unit] } \\ 0, & \text { otherwise } .\end{cases}
$$

Here, all states $a_{i}, i=1, \ldots, N-1$ are inessential, and there are infinitely many invariant distributions: any probability distribution of the form $\pi_{0}=\alpha \in[0,1], \pi_{N}=1-\alpha, \pi_{i}=0$ otherwise. Accordingly, for this problem, the object of interest is not the long-time behavior but the probability of ruin r_{n}, that is, the probability of reaching a_{0} before reaching a_{N} if the starting state is a_{n} so that n represents gambler's starting capital. Because $r_{n}=p r_{n+1}+q r_{n-1}$ and $r_{0}=1, r_{N}=0$, we have $r_{n}=1-(n / N)$ for $p=1 / 2$ and $r_{n}=\left(\beta^{n}-\beta^{N}\right) /\left(1-\beta^{N}\right), \beta=q / p \neq 1$. When the odds are not in gambler's favor [that is, $p<q$], the ruin is essentially certain: for example, with $N=100$, $p=0.455$, and $q=0.545$ we have $\beta \approx 1.1978$ and $r_{80} \approx 0.97$.

