
A Summary of Time-Homogeneous Finite State Markov Sequences.

Main objects.

State Space S = {a1, . . . , aN};
The Sequence X = (Xn, n ≥ 0), Xn ∈ S;

The Tail sigma algebra of X : I =
⋂
n≥0

σ(Xk, k ≥ n+ 1);

(One Step) Transition Probability Matrix P = (pij , i, j = 1, . . . , N) : pij = P(Xn+1 = aj |Xn = ai);

m Step Transition Probability Matrix P (m) = (p
(m)
ij , i, j = 1, . . . , N) : p

(m)
ij = P(Xn+m = aj |Xn = ai); P (1) = P.

Basic results.

(1) Markov Property: P(Xn = ai|Xn−1, . . . , X0) = P(Xn = ai|Xn−1), n ≥ 1.

(2) Transition probability matrices are stochastic: p
(m)
ij ≥ 0,

∑N
j=1 p

(m)
ij = 1, i = 1, . . . , N, m =

1, 2, . . . .
(3) Chapman-Kolmogorov equation: P (m) = Pm.

Proof. Start with m = 2:

p
(2)
ij = P(X2 = aj |X0 = aj) =

N∑
ℓ=1

P(X2 = aj , X1 = aℓ|X0 = ai)

=

N∑
ℓ=1

P(X2 = aj |X1 = aℓ, X0 = ai)P(X1 = aℓ, X0 = ai)

=

N∑
ℓ=1

P(X2 = aj |X1 = aℓ)P(X1 = aℓ, X0 = ai) =

N∑
ℓ=1

piℓpℓj ,

where the third equality is a particular case of

P(A ∩B|C) = P(A|B ∩ C)P(B|C)

and the fourth equality is the Markov property. The general m is similar.
(4) Distribution of Xn: if µi = P(X0 = ai), i = 1, . . . , N , then

P(Xn = aj) =

N∑
i=1

µip
(n)
ij .

(5) Linear Model Representation: If Xn is a column vector in RN with component number i equal to
I(Xn = ai), then

Xn+1 = P⊤Xn +Vn+1,

where P⊤ is the transpose of the matrix P and the random variables Vn, n ≥ 1, defined by

Vn = Xn − P⊤Xn−1,

have zero mean [because, by construction, E(Xn|Xn−1) = P⊤Xn−1], and are uncorrelated: EV⊤
nVm is the

zero matrix for m ̸= n [similarly, by conditioning].
(6) Recursive generation of a sample path of X: on step n, generate a random variable U that is uniform

on (0, 1) and, if Xn = ai, then set Xn+1 = a1 if U ≤ pi1, Xn+1 = a2 if pi1 < U ≤ pi1 + pi2, etc.

(7) Exponential (Geometric) Ergodicity: If there exists an ℓ such that p
(ℓ)
ij > 0 for all i, j = 1, . . . , N ,

then there exists a unique probability distribution π = (π1, . . . , πN ) on S and numbers C > 0 and r ∈ (0, 1)
with the following properties:

• πi > 0 for all i = 1, . . . , N
• πi is the almost-sure limit of 1

n

∑n
k=1 I(Xk = ai) as n → +∞;

• 1/πi is the average return time to ai if X0 = ai;

• πj =
∑N

i=1 πipij (invariance of π: if P(X0 = ai) = πi, then P(Xn = ai) = πi for all n > 0; also, as a row
vector, π is the left eigenvector of P );

• The distribution of Xn converges to π exponentially quickly regardless of the initial distribution of X0:

max
i,j

|πj − p
(n)
ij | ≤ Crn, max

j

∣∣∣ N∑
i=1

µip
(n)
ij − πj

∣∣∣ = max
j

∣∣∣ N∑
i=1

µi(p
(n)
ij − πj)

∣∣∣ ≤ Crn. (1)
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An outline of the proof. Taking for granted that π exists, let δ > 0 be such that p
(ℓ)
ij > δπj for all i.

Take θ = 1− δ and define Q by P ℓ = (1− θ)Π+ θQ, where the matrix Π has all rows equal to π. Next,
argue by induction that

Pnℓ = (1− θn)Π + θnQn

so that, for m ≥ 1,
Pnℓ+m −Π = θn(QnPm −Π),

from which (1) follows with r = θ1/ℓ and C = 1/θ.

Further Definitions.

(1) Chain is an indication that the state space is countable; Sequence is an indication that the time is discrete.

(2) Irreducible Markov chain X: for every i, j there is an n ≥ 1 such that p
(n)
ij > 0 (each state is accessible

from every other state);
(3) The Period di of the state ai is the greatest common divisor of the numbers n for which pnii > 0.

Aperiodic state has di = 1.
(4) Total variation distance between two probability distributions µ and ν on S is s

∥µ− ν∥TV =
1

2

N∑
i=1

|µi − νi|.

Further Results.

(1) A state ai is aperiodic if and only if there exists an n0 ≥ 1 such that, for all n > n0, p
(n)
ii > 0.

(2) All states in an irreducible chain have the same period.

(3) If the chain is irreducible and aperiodic, then there exists an m such that p
(m)
ij > 0 for all i, j = 1, . . . , N .

[Indeed, p
(m+q+r)
ij ≥ p

(m)
ik p

(q)
kk p

(r)
kj .]

(4) A stronger version of (1) is

∥π − p
(n)
i• ∥TV ≤ Crn.

The fundamental question: given the chain X, how to find the r from (1).

Further developments: Mixing time and cut-off phenomena; Metropolis-Hastings algorithm and MCMC; Hidden
Markov Models (HMM) and the estimation algorithms of Viterbi and Baum-Welch.

The reference: D. A. Levin and Y. Peres. Markov chains and mixing times, Second edition. American Mathematical
Society, Providence, RI, 2017. xvi+447 pp. ISBN: 978-1-4704-2962-1.

The bottom line: A nice discrete time Markov chain is time-homogeneous, finite state, irreducible and aperiodic;
for a time-homogenous finite-state Markov chain X with transition matrix P , the following three properties are
equivalent: (a) all entries of the matrix Pn are non-zero for some n ≥ 1; (b) as n → ∞, every row of Pn converges
to the same (unique) invariant distribution π for X and πi > 0 for all i; (c) X is irreducible and aperiodic.

Beyond the nice setting.

Starting point: a discrete-time, time-homogenous Markov chain X = (X0, X1, X2, . . .) with a countable state space
S = {a1, a2, . . .} and transition matrix P = (pij , i, j ≥ 1); pij = P

(
Xn+1 = aj |Xn = ai

)
, and, for m ≥ 2,

Pm = (p
(m)
ij , i, j ≥ 1), p

(m)
ij = P

(
Xn+m = aj |Xn = ai

)
, with conventions p

(0)
ii = 1, p

(1)
ij = pij .

Definitions based on the arithmetic properties of P .

(1) State ai is absorbing if pii = 1;

(2) State aj is accessible from ai, i ̸= j if p
(m)
ij > 0 for some m ≥ 1 [by convention, every state is accessible

from itself];

(3) Communicating states ai and aj are mutually accessible: p
(n1)
ij > 0, p

(n2)
ji > 0 for some n1, n2 ≥ 0 [by

convention, each state communicates with itself, making communication an equivalence relation];
(4) State aj is essential if it is absorbing or if it communicates with every state that is accessible from it: either

pjj = 1 or, for every i ̸= j, if p
(n)
ji > 0 for some n then p

(m)
ij > 0 for some m;

(5) Inessential states are those that are not essential: X eventually gets out of an inessential state but never
comes back to it;

(6) Irreducible class is an equivalence class of (essential) communicating states;
(7) The Period di of the state ai is the greatest common divisor of the numbers n for which pnii > 0;
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(8) Irreducible chain has only one irreducible class;
(9) Aperiodic chain has all states with period 1.
(10) An invariant (stationary) measure for P (or for X) is a positive measure µ on S such that

∑
i µipij = µj ,

with µi = µ(ai). Note that µ(S) = +∞ is allowed. If µ(S) < +∞ and πi = µi/µ(S), then π is the invariant
(stationary) distribution for P .

(11) An invariant measure µ for P is called reversible if

µipij = µjpji for all i, j. (2)

Note that a measure satisfying (2) must be invariant: just sum up both sides over i (or over j).
(12) A function f : S → R is called [sub](super)-harmonic if f(ai) [≤](≥) =

∑
j pijf(aj).

Definitions based on the asymptotic properties of Pn as n → ∞.

(1) State ai is recurrent if
∑

n≥1 p
(n)
ii = +∞ and is transient otherwise;

(2) State ai is positive recurrent if

∞∑
n=1

nf
(n)
i < ∞, f

(1)
i = pii, p

(n)
ii =

n∑
k=1

f
(k)
i p

(n−k)
ii , n ≥ 2.

(3) State ai is null recurrent if it is recurrent but not positive recurrent;
(4) A chain X is (positive) recurrent if all the states are (positive) recurrent;
(5) A chain X is ergodic if, as n → ∞, all rows of Pn converge to the (unique) invariant distribution π for P

and πi > 0 for all i.

Basic facts:

(1) If the state space has N elements, then X is irreducible if and only if the matrix IN×N + P + P 2 + · · ·+ PN

has all entries strictly positive;
(2) All states within one irreducible class have the same period, leading to a cycle, or cyclic, decomposition of

the class;
(3) If ai is recurrent and aj is accessible from ai, then aj is also recurrent and communicates with ai;
(4) With τi = inf{n ≥ 1 : Xn = ai}, we have

f
(k)
i = P(τi = k|X0 = ai),

so that

P(τi < +∞|X0 = ai) =

∞∑
k=1

f
(k)
i < ∞,

∑
n≥1

p
(n)
ii = P(τi < +∞|X0 = ai)

1 +
∑
n≥1

p
(n)
ii

 ,

and the state ai is
• transient if and only if P(τi = +∞|X0 = ai) > 0;
• recurrent if and only P(τi < +∞|X0 = ai) = 1,
• positive recurrent if and only if E(τi|X0 = ai) < ∞;

(5) Inessential states are transient, and, if the state space is finite, then all transient states are inessential (that
is, in a finite state Markov sequence, a state is (positive) recurrent if and only if it is essential);

(6) If aj is accessible from ai, i ̸= j, and aj is absorbing, then ai is inessential;
(7) In terminology of graph theory, a chain on a graph is

• irreducible if and only if the graph is connected;
• aperiodic and irreducible if and only if the graph is non-bipartite;

Further facts.

(1) If ai is a recurrent state and τi = inf{n ≥ 1 : Xn = ai}, then

µ
(i)
j =

∞∑
n=0

P(Xn = aj , τi > n|X0 = ai)

defines an invariant measure for P ; the measure is finite if ai is positive recurrent.
(2) If the chain is irreducible, then the following three statements are equivalent: (a) at least one state is positive

recurrent; (b) all states are positive recurrent; (c) an invariant distribution exists.
(3) If π is an invariant distribution for P and π(ai) > 0, then ai is recurrent;
(4) If X is irreducible, aperiodic, and recurrent, then the tail sigma algebra of X is trivial;
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(5) If X is irreducible and recurrent, and all states have period d > 1, then the tail sigma algebra of X is
determined by the cycle decomposition of the state space S and is non-trivial.

(6) A function f : S → R is [sub](super)-harmonic if and only if the sequence f(Xn), n ≥ 0 is a [sub](super)-
martingale with respect to the filtration generated by X. An irreducible X is recurrent if and only if every
non-negative super-harmonic function is constant.

Examples

(1) Simple symmetric random walk on the line with arbitrary starting point is irreducible; each state is
null recurrent and has period 2; the tail sigma algebra consists of four sets.

(2) Ehrenfest chain has S = {0, 1, . . . , N},

pij =


j/N, j = i− 1,

(N − j)/N, j = i+ 1,

0, otherwise

and, even though all states have period 2, there is a unique invariant distribution π with πk = 2−N
(
N
k

)
. Still,

the chain is not ergodic in the sense that the rows of Pn do not converge to π as n → ∞.
(3) A birth and death chain with S = {0, 1, 2 . . .}, p00 = 2/3, p01 = 1/3,

pij =


2/3, j = i− 1,

1/3, j = i+ 1,

0, otherwise,

is reversible, with invariant distribution πk = 2−k−1, k = 0, 1, 2, . . . .

(4) M/G/1 queue with arrival intensity λ and service time cdf F : if ak = 1
k!

∫ +∞
0

e−λt(λt)kdF (t) [probability
that k customers arrive while one is served], then the numbers of customers Xn in the buffer at the time
n-th customer enters service is a Markov chain with

pij =


a0 + a1, i = j = 0,

ak, j = i− 1 + k and i ≥ 1 or k > 1,

0, otherwise.

With ν =
∑

k≥1 kak [average number of new customers arriving while one is served], the chain is transient if
µ > 1, null recurrent if µ = 1, and positive recurrent, with a unique invariant distribution, if µ < 1.

(5) A particular example of an M/M/∞ queue is Xn+1 =
∑Xn

m=1 ξmn + Yn, where ξmn are iid Bernoulli
with probability of success p ∈ (0, 1) [representing the customers still served at time n + 1] and Yn are iid
(also independent of ξ) Poisson random variables with mean λ [representing new customers arriving in one
time unit], then the chain (Xn), n ≥ 1, is ergodic, with the unique invariant distribution equal to Poisson
with mean λ/(1− p).

(6) Gambler’s ruin model has ai = i, i = 0, . . . , N, with absorbing states a0 and aN and

pij =


p, j = i+ 1, i < N [winning one unit]

q = 1− p, j = i− 1, i > 0 [losing one unit]

0, otherwise.

Here, all states ai, i = 1, . . . , N − 1 are inessential, and there are infinitely many invariant distributions:
any probability distribution of the form π0 = α ∈ [0, 1], πN = 1 − α, πi = 0 otherwise. Accordingly, for this

problem, the object of interest is not the long-time behavior but the probability of ruin rn, that is, the probability

of reaching a0 before reaching aN if the starting state is an so that n represents gambler’s starting capital. Because

rn = prn+1+qrn−1 and r0 = 1, rN = 0, we have rn = 1−(n/N) for p = 1/2 and rn = (βn−βN )/(1−βN ), β = q/p ̸= 1.

When the odds are not in gambler’s favor [that is, p < q], the ruin is essentially certain: for example, with N = 100,

p = 0.455, and q = 0.545 we have β ≈ 1.1978 and r80 ≈ 0.97.


