Spring 2022, MATH 408, Final Exam

Monday, May 9; 8-10am
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- You should have access to a calculator or some other computing device, and to the distribution tables (normal, t, χ^{2}, and F). Instead of the tables, you are welcome to use the statistical functions available on your computing device.
- Answer all questions and clearly indicate your answers; upload the solutions to GradeScope.

- There are ten problems; each problem is worth 10 points.

Problem 1. Let X_{1}, \ldots, X_{25} be an independent random sample from a normal population with unknown mean μ and unknown variance σ^{2}. It is known that $\quad \bar{X}_{n}=10 \quad S_{n}=5$ $x_{24.0 .025}^{2}=39.364$ $x_{24,0.975}^{2}=12.401$

$$
\sum_{k=1}^{25} X_{k}=250, \sum_{k=1}^{25} X_{k}^{2}=3100 . \quad S_{n}^{2} \cdot(n-1)=\frac{\sum x_{k}^{2}-n\left(\bar{x}_{n}\right)^{2}-x_{n-1}^{2}}{G_{00}^{\prime \prime}=25.24}
$$

Construct the 95% confidence interval for $\sigma . \rightarrow\left[\sqrt{\frac{600}{9.364}}, \sqrt{\frac{600}{12.401}}\right] \approx[4,7]$
To get full credit, indicate the values of the sample mean, sample standard deviation, and the quartile of the corresponding distribution you need to construct the confidence interval.

Problem 2. Let X_{1}, \ldots, X_{n} be an independent random sample from the $\operatorname{Gamma}(3,1 / \theta)$ distribution; in particular, the pdf of each X_{k} is $\quad L_{n}\left(\vec{X}_{h} ; \theta\right) \propto \exp \left(-n \theta \bar{x}_{n}+3 n \ln \theta\right)$

$$
\hat{\theta}_{r}=\frac{3}{\bar{x}_{n}} \quad f(x ; \theta)=\frac{\theta^{3}}{2} x^{2} e^{-x \theta} 1(x>0) \cdot \frac{\partial}{\partial \theta} \ln \ln \left(\vec{X}_{n} ; \theta\right)=-n \bar{X}_{n}+\frac{3 n}{\theta} \frac{+}{\hat{\theta}_{n}}
$$

Construct the MLE of θ. Make sure to check that you indeed maximized the likelihood function.

$$
H_{0}: \mu_{p b}=\mu_{P v} \quad H_{1}: \mu_{p b} \neq \mu_{p u} \text {. Not due to chance }
$$

Problem 3. A study reports that freshmen at public universities work 11.1 hours a week for pay, on average, and the s_{n} is 8.4 hours; at private universities, the average is 9.3 hours and the s_{n} is 7.2 hours. Assume these data are based on two independent simple random samples, each of size $n=900$. Is the difference between the averages due to chance? Explain your conclusion by stating the \downarrow corresponding null and alternative hypotheses and computing the p-value.
Large $\rightarrow 3$-test. $z^{*}=(11.1-9.3) \cdot 30 /\left(8.4^{2}+7.2^{2}\right)^{1 / 2}=4.88 \Rightarrow p$-value $=\mathbb{P}(|N(Q, 1)|>4.88)<0.0 \mid$ $\sqrt{n}=30$ Problems 4 . Let X_{1}, \ldots, X_{n} be an independent random sample from the $\operatorname{Gamma}(3,1 / \theta)$ distribution; in particular, the pdf of each X_{k} is $\quad N-p$: reject H_{0} if $\frac{L_{n}\left(\vec{x}_{n}, 1\right)}{L_{n}\left(\vec{x}_{n}\right)}$ in small
$\frac{L_{n}\left(\vec{x}_{n}, 2\right)}{\left(\vec{x}_{n}, 2\right)} \propto \exp \left(n \bar{x}_{n}\right) \quad f(x ; \theta)=\frac{\theta^{3}}{2} x^{2} e^{-x \theta} 1(x>0)$. Construct the most powerful test with Type-I error equal to 0.05 for testing $H_{0}: \theta=1$ against $H_{1}: \theta=2$. reject H_{0} if $n \bar{x}_{n}<\underset{\sim}{\operatorname{Gamma}(3 n, 1)_{0.95}^{\sim} \rightarrow \sim}$

Problem 5. For the first-year students at a certain university, the correlation between SAT $=x$ scores and the first-year GPA was 0.6. Assume that the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT
was 80%.

Problem 6. Fill in the rest of the following two-way ANOVA table.

Source	SS	df	MS	F	Prob $>F$
Columns	87	5	17.4	1	0.44
Rows	157	4	39.25	2.25	0.1
Error	348	20	17.4	χ	χ
Total	592	29	χ	χ	χ

Problem 7. To test whether a die is fair, 78 rolls were made, and the corresponding outcomes were as follows:

$$
\begin{aligned}
& H_{0}: \text { die infarr } \\
& H_{1}: \text { die is not fair }
\end{aligned}
$$

Face value	Observed frequency	exp $=\frac{78}{6}=13$	$(0 b-\exp)^{2}$
1	10	13	9
2	11	13	4
3	18	13	25
4	17	13	16
5	12	13	1
6	10	13	9
χ^{2} test is used. $\varphi^{*}=\frac{64}{13} \cong 5$	$\frac{9}{64}$		

(b) Based on your estimate, would you consider the die fair? Explain your conclusion. p-value $=\mathbb{P}\left(x_{5}^{2}>5\right)>\mathbb{P}\left(x_{5}^{2}>9.236\right)=0.1 \Rightarrow$ yes

Problems 8. Assume the following is an independent sample from a population with a continuous $\operatorname{cdf} F_{X}=F(x)$:

$$
X_{1}=14 \quad X_{2}=6 \quad X_{3}=10.5 \quad X_{4}=11 \quad X_{5}=12 \quad X_{6}=9.5
$$

and assume that the following is an independent sample from a population with pdf $F_{Y}=F(x-\theta)$

$$
Y_{1}=14.5 \quad Y_{2}=8 \quad Y_{3}=7 \quad Y_{4}=9 \quad Y_{5}=13 \quad Y_{6}=11.5 . \quad P(Y>\times)>1 / 2
$$

Compute the p-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta>0$.
You will need the binomial coefficients $1,6,15,20,15,6,1$,

$$
\begin{aligned}
& 1(X<Y) \quad 1 \\
& P \text {-value }=\mathbb{P}(B(6,1 / 2) \geq 4)=1_{22} 164=\frac{1}{4 / 32} \rightarrow m=4,
\end{aligned}
$$

Problem 9. A coin-making machine produces pennies with unknown probability p to turn up heads; this probability is equally likely to be any number between 0 and 1 .

A coin pops out of the machine, flipped 25 times and lands heads 8 times. Compute the Bayesian estimate \hat{p} of p.

$$
f^{(\text {error })}=U(0,1)=\operatorname{Beta}(1,1)=1 f^{*}=\operatorname{Beta}(9,18)=0 \hat{p}=\frac{9}{27}=1 / 3 .
$$

Problem 10. Let X_{1}, \ldots, X_{n} be an independent random sample from a population with uniform distribution on the interval $(\theta, 2 \theta), \theta>0$. Compute the method of moments estimator $\widehat{\theta}_{n}$ of θ and the bias and the MSE of $\hat{\theta}_{n} . \quad \mathbb{E} X=\frac{3}{2} \theta ; \operatorname{Var} X=\frac{\theta^{2}}{12} \left\lvert\, m S E\left(\hat{\theta}_{n}\right)=\operatorname{Var}\left(\hat{\theta}_{n}\right)=\frac{4}{9} \operatorname{Var}\left(\bar{x}_{n}\right)\right.$ $\frac{X}{\theta}-1 \sim \cup(0,1)$.

