Spring 2022, MATH 408, Final Exam

Monday, May 9: 8–10am Instructor — S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- You should have access to a calculator or some other computing device, and to the distribution tables (normal, t, χ^2 , and F). Instead of the tables, you are welcome to use the statistical functions available on your computing device.
- Answer all questions and clearly indicate your answers; upload the solutions to GradeScope.
- There are ten problems; each problem is worth 10 points.

Problem 1. Let X_1, \ldots, X_{25} be an independent random sample from a normal population with unknown mean μ and unknown variance σ^2 . It is known that $X_h = 10$ $S_h = 1$

To get full credit, indicate the values of the sample mean, sample standard deviation, and the quantile of the corresponding distribution you need to construct the confidence interval.

Problem 2. Let X_1, \ldots, X_n be an independent random sample from the $Gamma(3, 1/\theta)$ distri-

the independent random sample from the constant X_k is $\angle_n \left(\overrightarrow{\times}_n ; \theta \right) \propto \exp\left(-n\theta \overrightarrow{\lambda}_n + 3n \ln \theta \right)$ $f(x;\theta) = \frac{\theta^3}{2} x^2 e^{-x\theta} \mathbf{1}(x>0). \quad \frac{\partial}{\partial \theta} \ln \angle_n \left(\overrightarrow{\lambda}_n ; \theta \right) = -n \cancel{\lambda}_n + \frac{3n}{\theta} \quad \frac{1}{\widehat{\theta}_n}$ bution; in particular, the pdf of each X_k is

Construct the MLE of θ . Make sure to check that you indeed maximized the likelihood function.

Problem 3. A study reports that freshmen at public universities work 11.1 hours a week for pay, on average, and the s_n is 8.4 hours; at private universities, the average is 9.3 hours and the s_n is 7.2 hours. Assume these data are based on two independent simple random samples, each of size N = 900. Is the difference between the averages due to chance? Explain your conclusion by stating the

corresponding null and alternative hypotheses and computing the *p*-value.

Large - 3 - 40+. $3^* = (40.4 - 9.3) \cdot 30 / (8.4^2 + 7.2^2)^{1/2} = 4.88 = 5^{-1} \cdot 20 / (8.48) < 00$ Problems 4. Let X_1, \ldots, X_n be an independent random sample from the $Gamma(3, 1/\theta)$ distribution; in particular, the pdf of each X_k is

N-P: reject the of $\frac{L_n\left(\overrightarrow{\times}_{n,1}\right)}{L_n\left(\overrightarrow{\times}_{n,2}\right)}$ is small $x^2e^{-x\theta}1(x>0)$. $\frac{\mathcal{L}_{\mathsf{h}}\left(\overrightarrow{\mathsf{X}}_{\mathsf{h}},\mathbf{1}\right)}{\mathcal{L}_{\mathsf{h}}\left(\overrightarrow{\mathsf{X}}_{\mathsf{h}},\mathbf{2}\right)} \propto \exp\left(\overset{\mathsf{h}}{\mathsf{X}}_{\mathsf{h}}\right) \qquad f(x;\theta) = \frac{\theta^{3}}{2}x^{2}e^{-x\theta}\mathbf{1}(x>0).$

Construct the most powerful test with Type-I error equal to 0.05 for testing $H_0: \theta = 1$ against $H_1: \theta = 2.$ reject Ho if $n \times n < Gamma(3n, 1)_{0.95}$

Problem 5. For the first-year students at a certain university, the correlation between SAT =× scores and the first-year GPA was 0.6. Assume that the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT

was 80%. = 0.84 => GPA rank in $P(N(0,1) < 0.6.0.84) \approx 0.7$ => (70%)

Problem 6. Fill in the rest of the following two-way ANOVA table.

Source	SS	df	MS	F	Prob > F	
Columns	87	5	17.4	1	0.44	(>0.1)
Rows	157	4	39,25	2.25	0.1	
Error	348	20	17.4	X	×	
Total	592	29	/	X	\	

Problem 7. To test whether a die is fair, 78 rolls were made, and the corresponding outcomes we

vere as follows:	Face value	Observed frequency	$e_{1} = \frac{78}{6} = 13$ (08-lxp)
	1	10 3	9
Ho: die in fair	2	11 13	4
H. : die is not fair	3	18 13	25
11, 11, 11	4	17 3	16
	5	12 13	1
	6	10 /3	q
(a) Estimate the p -value if the	χ^2 test is u	sed. $\varphi = \frac{64}{13} = 5$	64

(b) Based on your estimate would you consider the die fair? Explain your conclusion.

$$P-v \in L_{2} = P(\chi_{5}^{2}, 75) > P(\chi_{5}^{2}, 9.236) = 0.1 = V Yes$$

Problems 8. Assume the following is an independent sample from a population with a continuous $\operatorname{cdf} F_X = F(x)$:

$$X_1 = 14$$
 $X_2 = 6$ $X_3 = 10.5$ $X_4 = 11$ $X_5 = 12$ $X_6 = 9.5$,

and assume that the following is an independent sample from a population with cdf $F_Y = F(x - \theta)$

$$Y_1 = 14.5 \quad Y_2 = 8 \quad Y_3 = 7 \quad Y_4 = 9 \quad Y_5 = 13 \quad Y_6 = 11.5.$$
 $P(Y_2 \times Y_2) > V_2$

 $Y_1 = 14.5$ $Y_2 = 8$ $Y_3 = 7$ $Y_4 = 9$ $Y_5 = 13$ $Y_6 = 11.5$. (??) > ? Compute the p-value of the sign test for the null hypothesis $\theta = 0$ against the alternative $\theta > 0$.

You will need the binomial coefficients 1, 6, 15, 20, 15, 6, 1,

$$1(X < Y)$$
 1 1 0 0 1 1 1 $\rightarrow M = 4$
P-value = IP($3(6, Vz)$ 7, 4) = $\frac{22}{64} = \frac{4}{4}$

Problem 9. A coin-making machine produces pennies with unknown probability p to turn up heads; this probability is equally likely to be any number between 0 and 1.

A coin pops out of the machine, flipped 25 times and lands heads 8 times. Compute the Bayesian estimate \hat{p} of p.

$$f^{(qror)} = U(0, 1) = 3eta(1, 1) = 7 f^* = 3eta(9, 18) = 7 \hat{p} = \frac{9}{27} = (1/3.)$$

Problem 10. Let X_1, \ldots, X_n be an independent random sample from a population with uniform distribution on the interval $(\theta, 2\theta)$, $\theta > 0$. Compute the method of moments estimator $\widehat{\theta}_n$ of θ and the bias and the MSE of $\widehat{\theta}_n$. $\mathbb{E} \times = \frac{3}{2} \mathbb{Q}$; $\mathbb{Var} \times = \frac{\mathbb{Q}^2}{12}$ $\mathbb{E} \times \mathbb{E}(\widehat{\theta}_n) = \mathbb{Var}(\widehat{\theta}_n) = \frac{2}{3} \mathbb{E} \times \mathbb{E} \times \mathbb{E}(\widehat{\theta}_n) = \mathbb{E} \times \mathbb{$