Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@math.usc.edu)

Name: \qquad

Instructions:

- No books or notes of any kind.
- Turn off cell phones.
- All the necessary tables are provided, but you are also welcome to use the corresponding statistical functions on your calculator.
- Answer all questions and clearly indicate your answers.
- Each problem is worth 20 points.
- Show your work! Points might be taken off for a correct answer with no explanations. Wrong answer with no explanations is worth zero points.

Problem	Possible	Actual	Problem	Possible	Actual
1	20		6	20	
2	20		7	20	
3	20		8	20	
4	20		9	20	
5	20		10	20	
Total	100		Total	100	

Problem 1. The following results were obtained for about 1,000 families: average height of husband 69 inches, SD 2.4 inches; average height of wife 64 inches, SD 2.6 inches, correlation coefficient $r=0.66$. Of the women who were married to men of height 72 inches, what percentage were under 64 inches?

Problem 2. To test whether a die is fair, 72 rolls were made, and the corresponding outcomes were as follows:

Face value	Observed frequency
1	9
2	10
3	17
4	16
5	11
6	9

Estimate the P-value if the χ^{2} test is used.

Problem 3. Fill in the rest of the following one-way ANOVA table.

Source	SS	df	MS	F	Prob $>F$
Rows	157				
Error		20			
Total	592	23			

Problem 4. Consider an independent random sample X_{1}, \ldots, X_{26} of size 26 from a normal population, and assume that

$$
\sum_{k=1}^{26} X_{k}=260 \text { and } \sum_{k=1}^{26} X_{k}^{2}=2700
$$

Construct 95% confidence intervals for the mean and standard deviation of the population.

Problem 5. A study reports that freshmen at four-year public universities work 10.2 hours a week for pay, on average, and the SD is 8.5 hours; at two-year community colleges, the average is 11.5 hours and the SD is 8.6 hours. Assume these data are based on two independent simple random samples, each of size 225 . Is the difference between the weekly work hours statistically significant?

Problem 6. In 1970, 55% of freshmen at a certain college studied 40 hours or more per week. In 2005 , the percentage changed to 50%. Is this change statistically significant? You may assume that the percentages are based on two independent simple random samples, each of size 196.

Problem 7. Assume that

$$
X_{1}=1, X_{2}=3, X_{3}=5, X_{4}=2, X_{5}=4, X_{6}=6
$$

is an independent random sample from a population with a continuous cdf $F_{X}=F(x)$, and assume that

$$
Y_{1}=2, Y_{2}=4, Y_{3}=6, Y_{4}=1, Y_{5}=5, Y_{6}=3
$$

is an independent random sample from a population with cdf $F_{Y}=F(x-\theta)$. Compute the p-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta>0$.

Problem 8. Fill in the rest of the following two-way ANOVA table.

Source	SS	df	MS	F	Prob $>F$
Columns		4			
Rows	87				
Error	348	20			
Total	592	29			

Problems 9. A coin-making machine produces pennies in such a way that, for each coin, the probability to turn up heads is uniform on $[0,1]$. A coin pops out of the machine, flipped three times and lands heads twice. Compute the Bayesian point estimate and a 90% confidence, or credible, interval for the (posterior) probability p that the coin turns up heads.

Problem 10. Let X_{1}, \ldots, X_{n} be an independent random sample from a population with uniform distribution on the interval $(\theta-1, \theta+1)$. Compute the method of moments estimator $\widehat{\theta}_{n}$ of θ, and the bias and the MSE of $\widehat{\theta}_{n}$.

