Name: $\qquad$

## Instructions:

- No books or notes of any kind.
- Turn off cell phones.
- All the necessary tables are provided, but you are also welcome to use the corresponding statistical functions on your calculator.
- Answer all questions and clearly indicate your answers.
- Each problem is worth 20 points.
- Show your work! Points might be taken off for a correct answer with no explanations.

| Problem | Possible | Actual | Problem | Possible | Actual |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 20 |  | 6 | 20 |  |
| 2 | 20 |  | 7 | 20 |  |
| 3 | 20 |  | 8 | 20 |  |
| 4 | 20 |  | 9 | 20 |  |
| 5 | 20 |  | 10 | 20 |  |
| Total | 100 |  | Total | 100 |  |

Problem 1. The following results were obtained for 1,000 families: average height of husband 69 inches, SD 2.4 inches; average height of wife 64 inches, SD 2.6 inches, correlation coefficient $r=0.6$. Of the women who were married to men of height 72 inches, what percentage were under 64 inches?

Problem 2. To test whether a die is fair, 72 rolls were made, and the corresponding outcomes were as follows:

| Face value | Observed frequency |
| :---: | :---: |
| 1 | 9 |
| 2 | 10 |
| 3 | 17 |
| 4 | 16 |
| 5 | 11 |
| 6 | 9 |

Estimate the $p$-value if the $\chi^{2}$ test is used.

Problem 3. For the first-year students at a certain university, the correlation between SAT scores and the first-year GPA was 0.66 . Assume the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT was $30 \%$.

Problem 4. Consider an independent random sample $X_{1}, \ldots, X_{36}$ of size $n=36$ from a normal population, and assume that

$$
\sum_{k=1}^{36} X_{k}=432 \quad \text { and } \quad \sum_{k=1}^{36} X_{k}^{2}=8684
$$

Construct $95 \%$ confidence intervals for the mean and standard deviation of the population. [In the corresponding tables, use the average of the values for 30 and 40 degrees of freedom.]

Problem 5. A study reports that freshmen at four-year public universities work 10.2 hours a week for pay, on average, and the SD is 8.5 hours; at two-year community colleges, the average is 11.5 hours and the SD is 8.6 hours. Assume these data are based on two independent simple random samples, each of size 225 . Is the difference between the weekly work hours statistically significant?

Problem 6. In 1970, $55 \%$ of freshmen at a certain college studied 40 hours or more per week. In 2005 , the percentage decreased to $50 \%$. Is this decrease statistically significant? You may assume that the percentages are based on two independent simple random samples, each of size 400 .

Problem 7. Assume that

$$
X_{1}=2.1, X_{2}=4.3, X_{3}=6.5, X_{4}=1.2, X_{5}=5.6, X_{6}=3.7
$$

is an independent random sample from a population with a continuous cdf $F_{X}=F(x)$, and assume that

$$
Y_{1}=1.1, Y_{2}=3.3, Y_{3}=5.7, Y_{4}=2.2, Y_{5}=4.8, Y_{6}=6.9
$$

is an independent random sample from a population with $\operatorname{cdf} F_{Y}=F(x-\theta)$. Compute the $p$-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta<0$. [The binomial coefficients for $n=6$ are $1,6,15,20,15,6,1$.]

Problem 8. Fill in the rest of the following two-way ANOVA table.

| Source | SS | df | MS | $F$ | Prob $>F$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Columns | 571 | 4 |  |  |  |
| Rows |  |  |  |  |  |
| Error | 759 | 16 |  |  |  |
| Total | 2065 | 24 |  |  |  |

Problems 9. A coin-making machine produces pennies in such a way that, for each coin, the probability to turn up heads is uniform on $[0,1]$. A coin pops out of the machine, flipped three times and lands heads once. Compute the Bayesian point estimate and a $90 \%$ confidence, or credible, interval for the (posterior) probability $p$ that the coin turns up heads.

Problem 10. Let $X_{1}, \ldots, X_{n}$ be an independent random sample from a population with binomial distribution $\mathcal{B}(k, p)$ in which both $k$ and $p$ are unknown. Assume that

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=100, \quad \bar{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=20 .
$$

Compute the method of moments estimates $\hat{k}$ and $\hat{p}$ of $k$ and $p$. [Recall that if $X \sim \mathcal{B}(k, p)$, then $\mathbb{E} X=k p$ and $\operatorname{Var} X=k p(1-p)$. Now replace $\mathbb{E} X$ and $\operatorname{Var} X$ with the provided sample quantities and solve for $\hat{k}$ and $\hat{p}]$.

