December 14, 2009
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@math.usc.edu)

Name: \qquad

Instructions:

- No books, notes, or calculators.
- You have 120 minutes to complete the exam.
- Show your work.

Problem	Possible	Actual	Problem	Possible	Actual
1	20		6	20	
2	20		7	20	
3	20		8	20	
4	20		9	20	
5	20		10	20	
Total	100		Total	100	

Problem 1. A total of 10 identical gifts are to be distributed among 7 children. How many results are possible if every child is to receive at least one gift?

Problem 2. Suppose that A and B are independent events for which $P(A)=0.3$ and $P(B)=0.5$. What is the probability that either A or B occurs, but not both?

Problem 3. A population contains twice as many females as males. In this population, 5% of males and 0.25% of females are color-blind. A color-blind person is selected at random. Compute the probability that the person is male.

Problem 4. A fair coin is tossed 10 times. Let X be the difference between the number of heads and the number of tails. Find (a) the possible values of X (note: X can be both positive and negative) (b) $P(X=0)$.

Problem 5. Let X be a random variable with uniform distribution on [2,5]. Define the random variable Y by $Y=\ln X$. Compute the probability density function of the random variable Y.

Problem 6. A man and a woman decide to meet at a certain location. The arrival time of the man is uniformly distributed between $12: 10 \mathrm{pm}$ and $12: 40 \mathrm{pm}$. The arrival time of the woman is uniformly distributed between 12 pm and 1 pm . The man and the woman arrive independently of each other. Compute the probability that the man arrives first.

Problem 7. For a randomly selected group of 100 people, compute the expected number of distinct birthdays (that is, the expected number of the days of the year that are a birthday of at least one person in the group).

Problem 8. A fair die is rolled until the total sum of all rolls exceeds 300. Compute approximately the probability that more than 80 rolls are necessary. Note that, for a single roll of the die, the expected value and variance of the outcome are $7 / 2$ and $35 / 12$, respectively. Use the continuity correction. Leave the answer in the form $P(\xi<r)$, where ξ is a standard normal random variable and r is a suitable real number.

Problem 9. Customers arrive at a bank at a Poisson rate λ. Suppose that two customers arrives during the first hour. Compute the probability that at least one arrived during the first 20 minutes.

Problem 10. Starting with a random number generator producing independent random variables that are uniform on $[0,1]$, describe a method of generating a random variable with the distribution function $F(x)=x^{10}, 0<x<1$.

