Fall 2008, MATH 407, Final Exam

Monday, December 15, 2008, 11am-1pm

Instructor - S. Lototsky (DRB 258; x0-2389; lototsky@math.usc.edu)

Name: \qquad

Discussion section time:

Instructions:

- No books, notes, or calculators.
- You have 120 minutes to complete the exam.
- Show your work.

Problem	Possible	Actual	Problem	Possible	Actual
1	20		6	20	
2	20		7	20	
3	20		8	20	
4	20		9	20	
5	20		10	20	
Total	100		Total	100	

Problem 1. (cf. 17/17) A total of 7 different gifts are to be distributed among 10 children. How many results are possible if no child is to receive more than one gift?

Problem 2. (cf. 56/8) Suppose that A and B are mutually exclusive events for which $P(A)=0.3$ and $P(B)=0.5$. What is the probability that either A or B occurs?

Problem 3. (cf. 114/26) A population contains twice as many females as males. In this population, 5% of males and 0.25% of females are color-blind. A color-blind person is selected at random. What is the probability that the person is male?

Problem 4. (cf. 187/6) A fair coin is tossed three times. Let X be the difference between the number of heads and the number of tails. Find the distribution of X.

Problem 5. (cf. 251/39) Let X be an exponential random variable with parameter $\lambda=1$. Define the random variable Y by $Y=\ln X$. Find the probability density function of the random variable Y.

Problem 6. (cf. 314/13) A man and a woman decide to meet at a certain location. The arrival time of the man is uniformly distributed between $12: 15 \mathrm{pm}$ and $12: 45 \mathrm{pm}$. The arrival time of the woman is uniformly distributed between 12 pm and 1 pm . The man and the woman arrive independently of each other. What is the probability that the first to arrive waits no more than five minutes?

Problem 7. (cf. 411/21) For a randomly selected group of 100 people, compute the expected number of distinct birthdays (that is, the expected number of the days of the year that are a birthday of at least one person in the group).

Problem 8. (cf. 457/6) A fair die is rolled until the total sum of all rolls exceeds 300. Find approximately the probability that more than 80 rolls are necessary. Note that, for a single roll of the die, the expected value and variance of the outcome are $7 / 2$ and $35 / 12$, respectively. Use the continuity correction. Leave the answer in the form $P(\xi<r)$, where ξ is a standard normal random variable and r is a suitable real number.

Problem 9. (cf. 484/1) Customers arrive at a bank according to a Poisson process. Suppose that two customers arrived during the first hour. What is the probability that at least one arrived during the first 20 minutes?

Problem 10. (cf. 505/7) Starting with a random number generator producing independent random variables that are uniform on $[0,1]$, describe a method of generating a random variable with the cumulative distribution function

$$
F(x)= \begin{cases}0, & x \leq 0 \\ x^{10}, & 0<x<1 \\ 1, & x \geq 1\end{cases}
$$

