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1. INTRODUCTION

Let {Xn}∞n=1 denote i.i.d. random variables, all taking values in R. De-
fine

Sn := X1 +·· ·+Xn
∀n ≥ 1.

Recall the classical central limit theorem:

Theorem 1.1 (CLT). If E[X1] =µ and Var(X1) :=σ2 ∈ (0,∞), then

Sn −nµp
n

⇒ N (0,σ2),

where ⇒ means weak convergence (or convergence in distribution), and
N (m, v) denotes the normal distribution with mean m ∈ R and variance
v > 0.

This is a most rudimentary example of an “invariance principle.” Here
we have a limit theorem where the limiting distribution depends on the
approximating sequence only through µ and σ2.

Here is an application in classical statistical theory:

Example 1.2. Suppose we have a population (e.g., heart rates) whose
mean, µ, is unknown to us. In order to learn about this µ, we can take a
large independent sample X1, . . . , Xn from the said population, and con-
struct the sample average X̄n := (Sn/n). By the strong law of large num-
bers, X̄n ≈ µ. In order to find a more quantitative estimate we appeal to
the CLT; it asserts that

p
n

(
X̄n −µ)⇒ N (0,σ2).

One can then use the preceding to derive “approximate confidence bounds”
for µ. For instance, if n—the sample size—is large, then the CLT implies
that

P

{
µ= X̄n ± 2

σ
p

n

}
≈ 0.90.

This relies on the fact that P{N (0,1) ∈ [−2,2]} ≈ 0.90, which you can find in
a number of statistical tables. We have just found that, when the sample
size is large, we are approximately 90% certain that µ is to within 2/

p
σ2n

of the sample average.

The preceding example is quite elementary in nature. But it is a pow-
erful tool in applied work. The reason for this is the said invariance prop-
erty: We do not need to know much about the distribution of the sample
to say something about the limit. Being in L2(P) suffices!

Now suppose you are drawing samples as time passes, and you wish
to know if the mean of the underlying population has changed over time.
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Then, it turns out that we need to consider the sample under the assump-
tion that X1, . . . , Xn all have the same distribution. In that case, we com-
pute

Mn := max
1≤ j≤n

(S j − jµ) ∀n ≥ 1.

Is there a CLT for Mn? It turns out that the answer is a resounding “yes,”
and involves an invariance principle.

The same phenomenon holds for all sorts of other random variables
that we can construct by applying nice “functionals” to {S1, . . . ,Sn}. Donsker’s
theorem asserts that something far deeper happens.

First, let us make the usual simplification that, without loss of gen-
erality, E[X1] = 0 and Var(X1) = 1. Else, replace the Xi ’s everywhere by
X ′

i := (Xi −µ)/σ. Keeping this in mind, we can define for all ω ∈Ω, n ≥ 1,
and t ∈ (0,1],

(1.1) Sn(t ,ω) := 1p
n

n∑
i=1

[
Si−1(ω)+n

(
t − i −1

n

)
Xi (ω)

]
1(

i−1
n , i

n

](t ).

Also define Sn(0,ω) := 0. As usual, we do not write the dependence onω.
In this way, we see that Sn := {Sn(t ); t ∈ [0,1]} is a “random continuous
function.” This deserves to be made more precise. But before we do that,
we should recognize that Sn is merely the linear interpolation of the nor-
malized random walk {S1/

p
n, . . . ,Sn/

p
n}, and is parametrized by [0,1].

Thus, for instance, by the CLT, Sn(1) ⇒ N (0,1).
Let C [0,1] denote the collection of all continuous functions f : [0,1] →

R, and metrize it with d( f , g ) := supx∈[0,1] | f (x)− g (x)| for f , g ∈C [0,1].

Exercise 1.3. Check that (C [0,1],d) is a complete, separable, metric vec-
tor space.

Now consider the measure space (C [0,1],B), where B := B(C [0,1]) is
the Borel σ-algebra on C [0,1]. Then, each Sn is now a random variable
with values in (C [0,1],C ). Let P denote also the induced probability mea-
sure on the said measure space. [This is cheating a little bit, but no great
harm will come of it.]

The bulk of these notes is concerned with the following invariance prin-
ciple.

Theorem 1.4 (Donsker). Suppose {Xi }∞i=1 is an i.i.d. sequence with E[X1] =
0 and Var(X1) = 1. Then, Sn ⇒ W as n →∞, where W denotes Brownian
motion. The latter is viewed as a random element of (C [0,1],B).

It may help to recall that this means that for all bounded, continuous
functionsΛ : C [0,1] → R,

lim
n→∞E[Λ (Sn)] = E[Λ(W )] .
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Of course, bounded means that there exists a finite number ‖Λ‖ such that
for all f ∈C [0,1], |Λ( f )| ≤ ‖Λ‖.

Definition 1.5. A measurable function Λ : C [0,1] → R is called a func-
tional.

2. SOME APPLICATIONS

Before we prove Theorem 1.4, we should learn to apply it in a variety of
settings. That is precisely what we do here in this section.

Example 2.1. Let h : R → R be a bounded, continuous function. For
f ∈ C [0,1] define Λ( f ) := h( f (1)). It is easy to see that Λ is a continuous
functional. That is, Λ( fn) →Λ( f ) whenever d( fn , f ) → 0. For this special
Λ, Donsker’s theorem says that

E

[
h

(
Snp

n

)]
= E[h (Sn(1))] → E[h(W (1))] = E[h(N (0,1))] .

This is the CLT in disguise.

Example 2.2. Let h : R → R be a bounded, continuous function. For f ∈
C [0,1] defineΛ( f ) := h(supt∈[0,1] f (t )). Then,Λ is a bounded, continuous
functional. Donsker’s theorem says the following about this choice of Λ:
As n →∞,

E

[
h

(
sup

t∈[0,1]
Sn(t )

)]
= E[Λ (Sn)] → E[Λ(W )] = E

[
h

(
sup

t∈[0,1]
W (t )

)]
.

By the reflection principle, supt∈[0,1] W (t ) has the same distribution as
|N (0,1)|. Therefore, we have proved that supt∈[0,1] Sn(t ) ⇒|N (0,1)|, where
now ⇒ denotes weak convergence in R (not C [0,1]). By convexity,

sup
t∈[0,1]

Sn(t ) = max
0≤ j≤n

S j /
p

n.

(Hash this out!) Therefore, we have proved that for all x ≥ 0,

(2.1) lim
n→∞P

{
max

1≤ j≤n
S j ≤ x

p
n

}
=

√
2

π

∫ x

0

e−z2/2

p
2π

d z.

(Why?)

Example 2.3. Continue with Example 2.2, and note that for all x ≤ 0,

lim
n→∞P

{
min

1≤ j≤n
S j ≤ x

p
n

}
=

√
2

π

∫ x

−∞
e−z2/2

p
2π

d z.

(Why?) In fact, we can let α,β,γ ∈ R be fixed, and note that

α min
1≤ j≤n

S jp
n
+β max

1≤ j≤n

S jp
n
+γ Snp

n
⇒α inf

t∈[0,1]
W (t )+β sup

t∈[0,1]
W (t )+γ Snp

n
.
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(Why?) This is a statement about characteristic functions: It asserts that
the characteristic function of the random vector (min j≤n S j ,max j≤n S j ,Sn)/

p
n

converges to that of (inf[0,1] W, sup[0,1] W,W (1)). Therefore, by the conver-
gence theorem for three-dimensional Fourier transforms,(

min
1≤ j≤n

S jp
n

, max
1≤ j≤n

S jp
n

,
Snp

n

)
⇒

(
inf

t∈[0,1]
W (t ) , sup

t∈[0,1]
W (t ) , W (1)

)
,

where, now, ⇒ denotes weak convergence in R3. Write this as Vn ⇒ V ,
where Vn and V are the (hopefully) obvious three-dimensional random
variables described above. It follows that for any bounded, continuous h :
R3 → R, limn E[h(Vn)] = E[h(V )]. Apply this to h(x, y, z) := y−x to find that
max1≤ j≤n |S j |/

p
n ⇒ supt∈[0,1] |W (t )|. But the distribution of sup[0,1] W is

known (Khoshnevisan, 2005, Corollary 10.22, page 178). It follows from
the formula for the said distribution function that

(2.2) lim
n→∞P

{
max

1≤ j≤n
|S j | ≤ x

p
n

}
= 4

π

∞∑
k=0

(−1)k

2k +1
exp

(
− (2k +1)2π2

8x2

)
.

Exercise 2.4. Prove that for all bounded, continuous f : R → R,

1

n

n∑
i=1

f

(
Sip

i

)
⇒

∫ 1

0
f (W (s))d s.

Exercise 2.5 (Hard). Exercise 2.4 can be improved. For example, prove

1

n

n∑
i=1

1[0,∞)(Si ) ⇒|{0 ≤ s ≤ 1 : W (s) ≥ 0}| ,

where |{· · · }| denotes Lebesgue measure. We will return to this exercise
later on.

3. PROOF OF DONSKER’S THEOREM

For all positive integers k ≥ 1, and all continuous functions f : [0,1] →
R (i.e., all f ∈ C [0,1]), we can define a piecewise-linear function (πk f ) ∈
C [0,1] as follows: (πk f )(0) := f (0), and for all t ∈ (0,1],

(πk f )(t ) :=
2k∑

i=1

[
f

(
i −1

2k

)
+2k

(
t − i −1

2k

){
f

(
i

2k

)
− f

(
i −1

2k

)}]
1(

i−1
2k , i

2k

](t ).

That is, (πk f )(i 2−k ) = f (i 2−k ) for all i = 0, . . . ,k, and it interpolate be-
tween these values linearly. You should compare this to (1.1); for in-
stance, check that πkS2n =S2n for all integers k ≥ 2n . Also note the pro-
jection property: πk+1πk =πk+1; equivalently, if i ≤ j then πiπ j =π j .
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The following is an immediate consequence of the a.s.-continuity of
Brownian motion, and does not merit a proof. But it is worth writing out
explicitly.

Lemma 3.1. With probability one, limk→∞ d(πkW,W ) = 0.

The idea behind the proof of Donsker’s theorem is this: We know that
πkW ≈ W a.s., and hence in distribution. Out task would be two-fold:
On one hand, we prove that uniformly for all n (large) we can find k0

such that for all k ≥ k0, πkSn ≈ Sn . This is called “tightness.” On the
other hand, we will prove, using the ordinary CLT, that for each k fixed,
πkSn ⇒ πkW . This called the “weak convergence of the fdd’s.” Assem-
bling the pieces then gets us through the proof. Now we get on with ac-
tually proving things. The first step involves truncation to ensure that we
can have as many moments as we would like.

3.1. Truncation. Define, for all ν> 0 integers i ,n ≥ 1,

Y (ν)
i := Xi 1{|Xi |≤ν}, and X (ν)

i := (Y (ν)
i −E[Y (ν)

1 ]).

Also define S(ν)
n and S (ν)

n analogously.

Lemma 3.2. For all ν> 0,

(3.1) sup
n≥1

∥∥d
(
S (ν)

n ,Sn
)∥∥

2 ≤ 2
√

E[X 2
1 ; |X1| > ν].

In particular, for all λ> 0,

lim
ν→∞sup

n
P

{
d

(
S (ν)

n ,Sn
)>λ}= 0.

Proof. The second statement follows from the first, and Chebyshev’s in-
equality. We will concentrate on the first assertion.

Evidently,

E
[∣∣Sn −S(ν)

n

∣∣2
]
= Var

(
n∑

i=1
Xi 1{|Xi |>ν}

)
= nVar(X1; |X1| > ν) ≤ nE[X 2

1 ; |X1| > ν].

Now {Sn −S(ν)
n }∞n=1 is a mean-zero, P-integrable random walk. Therefore,

it is a martingale. By Doob’s L2 inequality,1

E

[
max

1≤ j≤n

∣∣∣S j −S(ν)
j

∣∣∣2
]
≤ 4E

[∣∣Sn −S(ν)
n

∣∣2
]
≤ 4nE[X 2

1 ; |X1| > ν].

1Recall that Doob’s L2 inequality states the following: If M is an L2-martingale, then
E[max j≤n M 2

j ] ≤ 4E[M 2
n].
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This proves the lemma because max1≤ j≤n |S j−S(ν)
j | =p

n supt∈[0,1] |Sn(t )−
S (ν)

n (t )|, thanks to piecewise linearity. �

Lemma 3.3. For each λ> 0,

lim
k→∞

sup
n≥1

P
{
d

(
πkS (ν)

n ,S (ν)
n

)>λ}= 0.

Proof. Thanks to piecewise linearity, if n > 2k then

d
(
πkS (ν)

n ,S (ν)
n

)≤ 1p
n

max
1≤ j≤2k

i∈[
( j−1)

⌊
n2−k

⌋
, j

⌊
n2−k

⌋]
∣∣∣S(ν)

j bn2−kc−S(ν)
i

∣∣∣ .

Therefore,

P
{
d

(
πkS (ν)

n ,S (ν)
n

)>λ}≤ 2k∑
j=1

P

{
max

( j−1)n2−k≤i≤ j n2−k

∣∣∣S(ν)
jbn2−kc −S(ν)

i

∣∣∣≥λpn

}
≤ 2k P

{
max

1≤i≤n2−k

∣∣∣S(ν)
i

∣∣∣≥λpn

}
,

because S(ν)
a+b − S(ν)

b has the same distribution as S(ν)
a . Now, {S(ν)

i }∞i=1 is
a mean-zero random walk whose increments are bounded by 2ν (why
not ν?). According to Azuma–Hoeffding inequality (Khoshnevisan, 2005,
Exercise 8.45, p. 143),

P

{
max

1≤i≤m

∣∣∣S(ν)
i

∣∣∣≥ t

}
≤ 2exp

(
− t 2

8ν2m

)
∀t > 0, m ≥ 1.

Therefore,

P
{
d

(
πkS (ν)

n ,S (ν)
n

)>λ}≤ 2k+1 exp

(
− λ2n

8ν2[n2−k ]

)
≤ 2k+1 exp

(
−λ

22k

8ν2

)
.

The lemma follows. �

3.2. Weak Convergence of Finite-Dimensional Distributions.

Definition 3.4. Let {Y (t )}t∈T denote a stochastic process indexed by some
set T . Then the finite-dimensional distributions of the process Y are
the totality of distributions of vectors of the form (Y (t1), . . . ,Y (tm)) as
t1, . . . , tm vary over T .

Define

(3.2) σ2
ν := Var

(
X (ν)

1

)
= Var(X1; |X1| ≤ ν) .

According to the CLT, for any fixed s ∈ (0,1),

S(ν)
bnscp

n
⇒σ2

νN (0, s),
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where ⇒ denotes weak convergence in R. Because W (s) has the same
distribution as N (0, s), the preceding is equivalent to the following:

S(ν)
bnscp

n
⇒σ2

νW (s).

Once again, ⇒ denotes weak convergence in R [s ∈ (0,1) is fixed here.]
Now choose and fix 0 ≤ s1 < s2 < . . . < sm ≤ 1, and note that {S(ν)

bnsi+1c −
S(ν)
bnsi c}

m−1
i=1 is an independent sequence. Moreover, S(ν)

si+1
−S(ν)

si
has the same

distribution as S(ν)
si+1−si

. Because W also has independent increments, this
verifies that as n →∞,

(3.3)

(
S(ν)
bnsi+1c−S(ν)

bnsi cp
n

)
1≤i≤m

⇒σ2
ν (W (si+1)−W (si ))1≤i≤m ,

where ⇒ denotes weak convergence in Rm , and (xi )1≤i≤m designates the
m-vector whose i th coordinate is xi .

Exercise 3.5. If (X 1
n , . . . , X m

n ) converges weakly in Rm to (X 1, . . . , X m), then
(X 1

n , X 1
n+X 2

n , . . . , X 1
n+·· ·+X m

n ) converges weakly in Rm to (X 1, X 1+X 2, . . . , X 1+
·· ·+X m).

Apply this exercise together with (3.3) to find the following.

Lemma 3.6. As n → ∞, the finite-dimensional distributions of the sto-

chastic process
{

n−1/2S(ν)
bnsc

}
s∈[0,1]

converge weakly to those of σ2
νW .

Let Ck denote the collection of all bounded, continuous functionals
Λ : C [0,1] → R such that Λ( f ) depends only on the values f (i 2−k ) (i =
0, . . . ,2k ). More precisely, if f (i 2−k ) = g (i 2−k ) for all i = 0, . . . ,2k then
Λ( f ) =Λ(g ) for allΛ ∈Ck . Note that wheneverΛ : C [0,1] → R is a bounded,
continuous functional, then Λ◦πk ∈ Ck . Therefore, Lemma 3.6, and the
definition of weak convergence on R1+2k

, together imply that for each
ν> 0 and k ≥ 1 fixed,

(3.4) πkS (ν)
n ⇒σ2

νπkW,

where ⇒ defines weak convergence in C [0,1].

3.3. Proof of Donsker’s Theorem (Theorem 1.4). Let Λ : C [0,1] → R de-
note a bounded, continuous functional once more. We write∣∣E[

Λ
(
S (ν)

n

)]−E
[
Λ(σ2

νW )
]∣∣≤ ∣∣E[

Λ
(
πkS (ν)

n

)]−E
[
Λ(σ2

νπkW )
]∣∣

+ ∣∣E[
Λ

(
πkS (ν)

n

)]−E
[
Λ

(
S (ν)

n

)]∣∣
+ ∣∣E[

Λ(σ2
νπkW )

]−E
[
Λ(σ2

νW )
]∣∣

:= T1 +T2 +T3.
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We established in (3.4) that limn→∞ T1 = 0 for each k ≥ 1 fixed. Therefore,

limsup
n→∞

∣∣E[
Λ

(
S (ν)

n

)]−E
[
Λ(σ2

νW )
]∣∣

≤ limsup
k→∞

sup
n

∣∣E[
Λ

(
πkS (ν)

n

)]−E
[
Λ

(
S (ν)

n

)]∣∣
+ limsup

k→∞
|E[Λ(πkW )]−E[Λ(W )]| .

Thanks to Lemma 3.1 and the dominated convergence theorem, the final
term vanishes. We aim to prove that

(3.5) lim
k→∞

sup
n

∥∥Λ(
πkS (ν)

n

)−Λ(
S (ν)

n

)∥∥
1 = 0.

Now we use a result from measure theory that I will leave to you as an
exercise.

Exercise 3.7. Suppose {Zn}∞n=1 is a sequence of bounded, real-valued ran-
dom variables. If Zn → Z in probability, then f (Zn) converges in L1(P) to
f (Z ) for all bounded, continuous functions f : R → R.

This and Lemma 3.3 together imply (3.5). This, in turn, proves that

lim
n→∞

∣∣E[
Λ

(
S (ν)

n

)]−E
[
Λ(σ2

νW )
]∣∣= 0.

That is, we have established that S (ν)
n ⇒ σ2

νW, where ⇒ denotes weak
convergence in C [0,1]. But limν→∞σ2

ν = E[X 2
1 ] = 1. Therefore,

lim
ν→∞E

[
Λ

(
σ2
νW

)]= E[Λ(W )].

Also, another round of the preceding exercise tells us that

lim
ν→∞sup

n

∣∣E[
Λ

(
S (ν)

n

)]−E[Λ (Sn)]
∣∣= 0;

consult Lemma 3.2. This proves Donsker’s theorem.

4. THE ARCSINE LAW

According to Exercise 2.5, if {Xn}∞n=1 are i.i.d., mean-zero, variance-one
random variables, and Sn := X1 +·· ·+Xn , then

1

n

n∑
i=1

1{Si>0} ⇒
∫ 1

0
1{W (s)>0} d s.

We now find the distribution of the latter random variable. To do so, it is
enough to consider the random walk {Sn}∞n=1 of choice, find the distribu-
tion of

∑n
i=1 1{Si>0} for that walk, normalize and take limits.
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Theorem 4.1 (Paul Lévy). For all a ∈ (0,1),

P

{∫ 1

0
1{W (s)>0} d s ≤ a

}
= 2

π
arcsin

(p
a
)

.

Consequently, for any mean-zero, variance-one random walk {Sn}∞n=1,

lim
n→∞P

{
1

n

n∑
i=1

1{Si>0} ≤ a

}
= 2

π
arcsin

(p
a
) ∀a ∈ (0,1).

We will do this by working with the special case where X1 = ±1 with
probability 1/2 each. The resulting random walk {Sn}∞n=1 is called the
simple symmetric walk. It goes also by the title of the Bernoulli walk,
Rademacher walk, etc.

4.1. Some Combinatorics for the Simple Walk. We delve a bit into the
combinatorial structure of simple walks. Feller (1968, Chapter 3) is an
excellent reference.

Definition 4.2. By a path of length n (more aptly, lattice path) we mean a
collection of points (k, s0), . . . , (k +n, sn) where si ∈ Z and |si+1− si | = 1. In
this case, we say that the path goes from (k, s0) to (k +n, sn).

At any step of its construction, a lattice path can go up or down. There-
fore, there are 2n paths of length n. Consequently, with probability 2−n ,
the first n steps of our simple walk {Sk }∞k=0 are equal to a given path of
length n that starts from (0,0), where S0 := 0. That is, all paths that start
from (0,0) and have length n are equally likely. Therefore, if Π is a prop-
erty of paths of length n,

P
{
{Si }n

i=0 ∈Π
}

= # of paths of length n that start from (0,0) and are inΠ

2n
.

(4.1)

Thus, any probabilistic problem for the simple walk has a combinatorial
variant, and vice versa.

Let Nn,x denote the number of paths that go from (0,0) to (n, x). An
elementary computation shows that

(4.2) Nn,x =
{( n

(n+x)/2

)
, if n +x is even,

0, otherwise.

Another important fact is the ‘reflection principle’ of Désiré André (1887).

Theorem 4.3 (The Reflection Principle). Suppose n, x, y > 0 and k ≥ 0 are
integers. Let M denote the number of paths that go from (k, x) to (k +n, y)
and hit zero at some point. Then M is equal to the number of paths that
go from (0,−x) to (n, y). That is, M = Nn,x+y .
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sn

-x

x

n
T

FIGURE 4.1. A reflected lattice path

Proof. Let T denote the first instant when a given path from (k, x) to (k +
n, y) crosses zero. Reflect the pre-T portion of this path to obtain a path
that goes from (k,−x) to (k +n, y) (Figure 4.1). This map is an invert-
ible operation, therefore M is equal to the number of paths that go from
(k,−x) to (k +n, y). It is easy to see that M does not depend on k. �

The following is the key to our forthcoming analysis.

Theorem 4.4 (The Ballot Problem). Let n, x > 0 be integers. Then the
number of paths that go from (0,0) to (n, x) and s1, . . . , sn > 0 is (x/n)Nn,x .

Define T0 to be the first time the simple walk crosses y = 0; i.e.,

(4.3) T0 := inf{k ≥ 1 : Sk = 0} (inf; :=∞).

Then, the ballot theorem is saying the following (check!):

P{T0 > n | Sn = x} = x

n
∀x = 1, . . . ,n.

Proof of the Ballot Theorem. Let M denote the number of paths that go
from (0,0) to (n, x) and s1, . . . , sn > 0. All paths in question have the prop-
erty that they go from (1,1) to (n, x). Therefore, we might as well assume
that x ≤ n, whence

M = #
[
paths from (1,1) to (n, x)

]
−#

[
paths from (1,1) to (n, x) and cross y = 0 at some intervening time

]
= Nn−1,x−1 −Nn−1,x+1.
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We have applied the reflection principle in the very last step. If n + x is
odd then Nn−1,x−1 = Nn−1,x+1 = Nn,x = 0, and the result follows. On the
other hand, if n +x is even, then by (4.2),

Nn−1,x−1 −Nn−1,x+1 =
(

n −1
n+x

2 −1

)
−

(
n −1

n+x
2

)

= (n −1)!(n+x
2 −1

)
!
(n−x

2

)
!
− (n −1)!(n+x

2

)
!
(n−x

2 −1
)
!

= Nn,x

n

{(n +x

2

)
−

(n −x

2

)}
,

whence the result follows. �

Define

(4.4) `2n := 1

n +1

(
2n

n

)
∀n ≥ 0.

Theorem 4.5. `2n−2 is the number of paths of length 2n which have si > 0
for all i ≤ 2n −1 and s2n = 0.

Proof. Let M denote the number of all paths of length 2n which have si >
0 for all i ≤ 2n−1 and s2n = 0. Evidently, M is the number of all paths that
go from (0,0) to (2n −1,1) and do not cross y = 0. By the ballot theorem,

M = 1

2n −1
N2n−1,1 = 1

2n −1

(
2n −1

n

)
,

which is equal to `2n−2. �

Theorem 4.6. `2n is the number of paths which have si ≥ 0 for all i ≤ 2n−1
and s2n = 0.

Proof. If M denotes the number of paths of interest, then M is the num-
ber of paths that go from (0,0) to (2n+1,1) such that si > 0 for all i ≤ 2n+1;
cf. Figure 4.2. [Simply shift the axes to the dashed ones, and add a piece
that goes from (0,0) to (1,1) in the new coordinate system.] Theorem 4.5
does the rest. �

Define f0 := 0 and u0 = 1. Then, for all n ≥ 1 define

u2n :=
(2n

n

)
22n

, f2n := u2n−2

2n
.

The following result computes various probabilities of interest.

Theorem 4.7. The following are valid for all n ≥ 1:

(1) P{S2n = 0} = u2n ;
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sn

n

1

1 2n2n-1

FIGURE 4.2. Adding a Piece to the Path

(2) P{T0 = 2n} = f2n ;
(3) P{Si ≥ 0 for all i ≤ 2n −3,S2n−2 = 0, S2n−1 =−1} = f2n ;
(4) P{T0 > 2n} = u2n ;
(5) P{Si ≥ 0 for all i ≤ 2n} = u2n .

Proof. Because there are N2n,0 = 22nu2n paths that end up at zero at time
2n, (1) follows. To prove (2) note that the number of paths that hit zero,
for the first time, at time 2n is exactly twice the number of paths which
satisfy si > 0 (i ≤ 2n −1) and s2n = 0. Theorem 4.5 then implies (2). Simi-
larly, Theorem 4.6 implies (5).

By (2),

P{T0 > 2n} = 1−
n∑

j=1
P{T0 = 2 j } = 1−

n∑
j=1

f2 j .

But it is easy to check that f2n = u2n−2 −u2n for all n ≥ 1. Because u0 = 1,
this means that

P{T0 > 2n} = 1−
[

(1−u2)+ (u2 −u4)+·· ·+ (u2n−2 −u2n)
]
= u2n .

This proves (4). It remains to verify (3). But this follows from Theorem 4.6:
the number of paths that satisfy si ≥ 0 (i ≤ 2n −3), s2n−2 = 0 and s2n−1 =
−1 is the same as the number of paths that satisfy si ≥ 0 (i ≤ 2n −2) and
s2n−2 = 0, which is `2n−2. �
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