Discrete Distributions: A Round-up

Bernoulli trials

Binomial $X \sim \mathcal{B}(n, p)$: number of successes in n trials

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0, \ldots, n
$$

Geometric $X \sim G(p)$: number of trials TO GET the first success

$$
P(X=k)=(1-p)^{k-1} p, k \geq 1 .
$$

Negative Binomial $X \sim \mathcal{N B}(p, m)$: number of trials TO GET m successes; $X=m, m+1, \ldots$
$P(X=k)=\binom{k-1}{m-1} p^{m-1}(1-p)^{(k-1)-(m-1)} p=\binom{k-1}{m-1} p^{m}(1-p)^{(k-m)}$
($m-1$ places to place the successes in the first $k-1$ trials; k-th
trial has to be a success)
Runs: in 64 tosses of a fair coin, 6 consecutive heads or 6 consecutive tails are likely.

Bernoulli

Jacob (Jacques) Bernoulli (1654-1705): Swiss.
Some contributions:

- First law of large numbers: $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=p$, if X_{k} are independent $\mathcal{B}(1, p)$;
- Bernoulli differential equation $y^{\prime}=p(x) y+q(x) y^{n}$;
- polar coordinates;
- Brother of Johann Bernoulli and uncle of Daniel Bernoulli; his own two children were not mathematicians.

Poisson Distribution

$X \sim \mathcal{P}(\lambda): P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k=0,1,2, \ldots ; E(X)=\operatorname{Var}(X)=\lambda$.
Poisson approximation of binomial distribution:

$$
\lim _{n \rightarrow \infty, p \rightarrow 0, n p \rightarrow \lambda}\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{\lambda^{k}}{k!} e^{-\lambda} .
$$

Quality of Approximation:

$$
\sum_{k=0}^{\infty}\left|\binom{n}{k} p^{k}(1-p)^{n-k}-\frac{\lambda^{k}}{k!} e^{-\lambda}\right| \leq \frac{2 \lambda}{n} \min (2, \lambda), \lambda=n p,
$$

a theorem of Prokhorov (for ideas, see Chapter 8 of the book)

Poisson and Prokhorov

Siméon Denis Poisson (1781-1840): French (distribution: 1837). Yuri Vasilevich Prokhorov (1929-2013): Russian.

Hyper-Geometric Distribution: Definition

The main thing to remember: 23 balls; 11 red, 12 black; take 9 ;

$$
P(5 \text { red })=\frac{\binom{11}{5}\binom{12}{4}}{\binom{23}{9}}
$$

General description: $X \sim \mathcal{H}(N, m ; n)$
N objects of two types; m of type $\mathrm{I} ; n$ is sample size; k is the number of Type I in the sample.

$$
P(X=k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, k=0,1, \ldots, \min (m, n)
$$

Key words: without replacement.

From Hyper-Geometric to Binomial

Theorem

$$
\lim _{N \rightarrow \infty \rightarrow \infty \rightarrow m / N \rightarrow p} \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Then can follow up with a Poisson approximation.
Example: a raffle; n^{2} tickets, n winning. You buy $2 n$ tickets.

$$
P(3 \text { win })=P\left(\mathcal{H}\left(n^{2}, n ; 2 n\right)=3\right) \approx P\left(\mathcal{B}\left(2 n, n^{-1}\right)=3\right) \approx P(\mathcal{P}(2)=3)
$$

does not depend on n (exact in the limit $n \rightarrow \infty$).
Bottom line: $\mathcal{H}(N, m ; n) \approx \mathcal{B}(n, m / N) \approx \mathcal{P}(n m / N)$

What else?

zeta distribution:

$$
P(X=k)=\frac{1}{\zeta(\alpha+1) k^{1+\alpha}}, \alpha>0, k=1,2, \ldots
$$

Choosing a suitable α can fit many models...
Riemann zeta function: $\zeta(t)=\sum_{k=1}^{\infty} \frac{1}{k^{t}}, t>1$.
Zipf distribution: $P(X=k)=C(N) k^{-1}, k=1, \ldots, N$.
Frequency of N ranked objects.
Erlang's distribution:

$$
P(X=k)=C(N) \frac{\lambda^{k}}{k!}, k=0, \ldots, N
$$

(truncated Poisson distribution)

Who are those people?

Georg Friedrich Bernhard Riemann (1826-1866): German (1859)

George Kingsley Zipf (1902-1950): American (1932) Agner Krarup Erlang (1878-1929): Danish (1906)

