Differentiation in non-Cartesian coordinates.
We have Cartesian coordinates $\left(x=x_{1}, y=x_{2}, z=x_{3}\right)$ and another coordinate system $Q=$ $\left(q_{1}, q_{2}, q_{3}\right)$ so that

$$
x_{k}=\chi_{k}\left(q_{1}, q_{2}, q_{3}\right), k=1,2,3 .
$$

Consider a point with Q coordinates $q_{1}=c_{1}, q_{2}=c_{2}, q_{3}=c_{3}$ and the corresponding Cartesian coordinates $x_{1}=\chi_{1}\left(c_{1}, c_{2}, c_{3}\right), x_{2}=\chi_{2}\left(c_{1}, c_{2}, c_{3}\right), x_{3}=\chi_{3}\left(c_{1}, c_{2}, c_{3}\right)$. The Q-coordinate curves through this point in the Q coordinates are $\vec{r}_{1}(t)=\left(c_{1}+t, c_{2}, c_{3}\right), \vec{r}_{2}(t)=\left(c_{1}, c_{2}+t, c_{3}\right), \vec{r}_{3}(t)=$ $\left(c_{1}, c_{2}, c_{3}+t\right)$. The same curves in Cartesian coordinates are

$$
\begin{aligned}
& \vec{r}_{1}(t)=\left\langle\chi_{1}\left(c_{1}+t, c_{2}, c_{3}\right), \chi_{2}\left(c_{1}+t, c_{2}, c_{3}\right), \chi_{3}\left(c_{1}+t, c_{2}, c_{3}\right)\right\rangle, \\
& \vec{r}_{2}(t)=\left\langle\chi_{1}\left(c_{1}, c_{2}+t, c_{3}\right), \chi_{2}\left(c_{1}, c_{2}+t, c_{3}\right), \chi_{3}\left(c_{1}, c_{2}+t, c_{3}\right)\right\rangle, \\
& \vec{r}_{3}(t)=\left\langle\chi_{1}\left(c_{1}, c_{2}, c_{3}+t\right), \chi_{2}\left(c_{1}, c_{2}, c_{3}+t\right), \chi_{3}\left(c_{1}, c_{2}, c_{3}+t\right)\right\rangle .
\end{aligned}
$$

We have the corresponding unit vectors $\hat{q}_{1}, \hat{q}_{2}, \hat{q}_{3}$ in the direction of $\vec{r}_{1}{ }^{\prime}(0), \vec{r}_{2}^{\prime}(0), \vec{r}_{3}{ }^{\prime}(0)$, respectively, and the numbers $h_{k}=\left\|\vec{r}_{k}{ }^{\prime}(0)\right\|, k=1,2,3$. Note that, to compute the length of $\vec{r}_{k}{ }^{\prime}(0)$, we have to write \vec{r}_{k} in Cartesian coordinates.

We assume that the Q-system is orthogonal, that is, $\hat{q}_{k} \cdot \hat{q}_{n}=0$ for $k \neq k$. Both cylindrical and spherical coordinates are orthogonal.

Coords $Q\left(q_{1}, q_{2}, q_{3}\right)$	h_{1}	h_{2}	h_{3}
Cylindrical (r, θ, z)	1	r	1
Spherical (r, θ, φ)	1	$r \sin \varphi$	r

If we have a scalar function f defined at different points in space, then the values of the function and of its gradient do not depend on the coordinate system, but the representations of the function and its gradient depend on the coordinate system. For example, if $f=x+y z=x_{1}+x_{2} x_{3}$ in Cartesian coordinates and $q_{1}=r, q_{2}=\theta, q_{3}=\varphi$ are the spherical coordinates, then $x_{1}=$ $r \cos \theta \sin \phi, x_{2}=r \sin \theta \sin \varphi, x_{3}=r \cos \phi$, and $f=r \cos \theta \sin \varphi+r^{2} \sin \theta \sin \varphi \cos \varphi$. We can then compute partial derivatives $f_{x_{k}}$, which immediately give us the gradient in the Cartesian coordinates, but it is not at all clear how the partial derivative f_{r}, f_{θ}, and f_{φ} relate to the gradient of f in the spherical coordinates.

Consider a function with a given representation $f=f\left(q_{1}, q_{2}, q_{3}\right)$ in the Q coordinates and consider the point in space with Q coordinates $q_{1}=c_{1}, q_{2}=c_{2}, q_{3}=c_{3}$. Since the Q coordinates are orthogonal, we have the expression for the gradient as

$$
\nabla f\left(c_{1}, c_{2}, c_{3}\right)=\left(\nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \hat{q}_{1}\right) \hat{q}_{1}+\left(\nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \hat{q}_{2}\right) \hat{q}_{2}+\left(\nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \hat{q}_{3}\right) \hat{q}_{3} .
$$

We need to write $\nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \hat{q}_{k}$ in terms of the partial derivatives of f with respect to its variables q_{1}, q_{2}, q_{3} at the point $\left(c_{1}, c_{2}, c_{3}\right)$. To this end, consider the functions $g_{k}(t)=f\left(\vec{r}_{k}(t)\right)$, $k=1,2,3$. For example, $g_{1}(t)=f\left(c_{1}+t, c_{2}, c_{3}\right)$. Then

$$
g_{k}^{\prime}(0)=\nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \vec{r}_{k}^{\prime}(0)=h_{k} \nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \hat{q}_{k}
$$

On the other hand, the special form of the vectors $\vec{r}_{k}(t)$, together with the definition of the partial derivative, implies that

$$
g_{k}^{\prime}(0)=\frac{\partial f\left(c_{1}, c_{2}, c_{3}\right)}{\partial q_{k}}
$$

For example,

$$
g_{1}^{\prime}(0)=\lim _{t \rightarrow 0} \frac{f\left(c_{1}+t, c_{2}, c_{3}\right)-f\left(c_{1}, c_{2}, c_{3}\right)}{t}=\frac{\partial f\left(c_{1}+t, c_{2}, c_{3}\right)}{\partial q_{1}} .
$$

As a result, $h_{k} \nabla f\left(c_{1}, c_{2}, c_{3}\right) \cdot \hat{q}_{k}=\frac{\partial f\left(c_{1}, c_{2}, c_{3}\right)}{\partial q_{k}}$, and so

$$
\nabla f=\frac{1}{h_{1}} \frac{\partial f}{\partial q_{1}} \hat{q}_{1}+\frac{1}{h_{2}} \frac{\partial f}{\partial q_{2}} \hat{q}_{2}+\frac{1}{h_{3}} \frac{\partial f}{\partial q_{3}} \hat{q}_{3},
$$

where $f=f\left(q_{1}, q_{2}, q_{3}\right)$ is the representation of the function in the Q coordinates.

For example, if the function f is originally defined in Cartesian coordinates by

$$
f=x+y z
$$

then

$$
f=r \cos \theta \sin \varphi+r^{2} \sin \theta \sin \varphi \cos \varphi=r \cos \theta \sin \varphi+\frac{r^{2}}{2} \sin \theta \sin 2 \varphi
$$

and

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial r} \hat{r}+\frac{1}{r \sin \varphi} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{1}{r} \frac{\partial f}{\partial \varphi} \hat{\varphi} \\
& =(\cos \theta \sin \varphi+r \sin \theta \sin 2 \varphi) \hat{r}+(-\sin \theta+r \cos \theta \cos \varphi) \hat{\theta}+(\cos \theta \cos \varphi+r \sin \theta \cos 2 \varphi) \hat{\varphi}
\end{aligned}
$$

Next, we derive the expression for the divergence in Q coordinates. Recall that, to compute the divergence in the cartesian coordinates, we consider a family of shrinking cubes with faces parallel to the coordinate planes. The same approach works in any coordinates by considering rectangular boxes whose sides are parallel to the local basis vectors $\hat{q}_{1}, \hat{q}_{2}, \hat{q}_{3}$. Let P be a point with Q coordinates $\left(c_{1}, c_{2}, c_{3}\right)$, and, for sufficiently small $a>0$, consider a rectangular box with vertices at the points with the Q coordinates $\left(c_{1} \pm(a / 2), c_{2} \pm(a / 2), c_{3} \pm(a / 2)\right)$. The volume of this box is approximately $a^{3}\left|\vec{r}_{1}^{\prime}(0) \cdot\left(\vec{r}_{2}^{\prime}(0) \times \vec{r}_{3}{ }^{\prime}(0)\right)\right|=a^{3} h_{1} h_{2} h_{3}$ Because the vectors \hat{q}_{k} are orthogonal, the vector \hat{q}_{k} is normal to two of the faces so that the area of each of those faces is approximately $a^{2} h_{m} h_{n}$, where $k \neq m \neq n$. Consider a continuously differentiable vector field \vec{F} written in the Q coordinates as $\vec{F}\left(q_{1}, q_{2}, q_{3}\right)=F_{1}\left(q_{1}, q_{2}, q_{3}\right) \hat{q}_{1}+F_{2}\left(q_{1}, q_{2}, q_{3}\right) \hat{q}_{2}+F_{3}\left(q_{1}, q_{2}, q_{3}\right) \hat{q}_{3}$. Then the flux of this vector field through the pair of faces with the normal vector \hat{q}_{1} is approximately

$$
\begin{aligned}
& a^{2}\left(h_{2}\left(c_{1}+(a / 2), c_{2}, c_{3}\right) h_{3}\left(c_{1}+(a / 2), c_{2}, c_{3}\right) F_{1}\left(c_{1}+(a / 2), c_{2}, c_{3}\right)\right. \\
& \left.-h_{2}\left(c_{1}-(a / 2), c_{2}, c_{3}\right) h_{3}\left(c_{1}-(a / 2), c_{2}, c_{3}\right) F_{1}\left(c_{1}-(a / 2), c_{2}, c_{3}\right)\right) \\
& \quad \approx a^{3} \frac{\partial\left(h_{2} h_{3} F_{1}\right)}{\partial q_{1}},
\end{aligned}
$$

with the approximation getting better as $a \rightarrow 0$. Similar expressions hold for the fluxes across the other two pairs of faces. Summing up all the fluxes, dividing by the volume of the box, and passing to the limit $a \rightarrow 0$, we get the formula for the divergence of \vec{F} in Q coordinates:

$$
\operatorname{div} \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(h_{2} h_{3} F_{1}\right)}{\partial q_{1}}+\frac{\partial\left(h_{1} h_{3} F_{2}\right)}{\partial q_{2}}+\frac{\partial\left(h_{1} h_{2} F_{3}\right)}{\partial q_{3}}\right) .
$$

In particular, in cylindrical coordinates,

$$
\operatorname{div} \vec{F}=\frac{1}{r}\left(\frac{\partial\left(r F_{1}\right)}{\partial r}+\frac{\partial F_{2}}{\partial \theta}+\frac{\partial\left(r F_{3}\right)}{\partial z}\right)
$$

in spherical coordinates,

$$
\operatorname{div} \vec{F}=\frac{1}{r^{2} \sin \varphi}\left(\frac{\partial\left(r^{2} \sin \varphi F_{1}\right)}{\partial r}+\frac{\partial\left(r F_{2}\right)}{\partial \theta}+\frac{\partial\left(r \sin \varphi F_{3}\right)}{\partial \varphi}\right)
$$

Recall that the Laplacian $\nabla^{2} f$ of a scalar field f is defined in every coordinate system as $\nabla^{2} f=$ $\operatorname{div}(\operatorname{grad} f)$. Let $f=f\left(q_{1}, q_{2}, q_{3}\right)$ be a scalar field defined in an orthogonal coordinate system Q. The

$$
\nabla^{2} f=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial f}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial q_{3}}\right)\right)
$$

In particular, in cylindrical coordinates,

$$
\nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} ;
$$

in spherical coordinates,

$$
\nabla^{2} f=\frac{1}{r^{2}}\left(\frac{\partial}{\partial r} r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \varphi} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{1}{r^{2} \sin \varphi} \frac{\partial}{\partial \varphi}\left(\sin \varphi \frac{\partial f}{\partial \varphi}\right)
$$

Next, we derive the formula for the CURL. Consider a continuously differentiable vector field \vec{F} written in the Q coordinates as $\vec{F}\left(q_{1}, q_{2}, q_{3}\right)=F_{1}\left(q_{1}, q_{2}, q_{3}\right) \hat{q}_{1}+F_{2}\left(q_{1}, q_{2}, q_{3}\right) \hat{q}_{2}+F_{3}\left(q_{1}, q_{2}, q_{3}\right) \hat{q}_{3}$. Let
us compute $\operatorname{curl} \vec{F}(P) \cdot \hat{q}_{1}$, where the point P has Q-coordinates $\left(c_{1}, c_{2}, c_{3}\right)$. For a sufficiently small $a>0$, consider a rectangle spanned by the vectors $a \vec{r}_{k}^{\prime}(0), k=2,3$, so that P is at the center of the rectangle. The vertices of the rectangle have the Q coordinates $\left(c_{1}, c_{2} \pm(a / 2), c_{3} \pm(a / 2)\right)$ and the area of this rectangle is approximately $a^{2} h_{2} h_{3}$. The line integral of \vec{F} along the two sides parallel to \hat{q}_{2} is approximately

$$
\begin{aligned}
& a\left(h_{2}\left(c_{1}, c_{2}, c_{3}-(a / 2)\right) F_{2}\left(c_{1}, c_{2}, c_{3}-(a / 2)\right)\right. \\
& \left.-h_{2}\left(c_{1}, c_{2}, c_{3}+(a / 2)\right) F_{2}\left(c_{1}, c_{2}, c_{3}+(a / 2)\right)\right) \\
& \approx-a^{2} \frac{\partial\left(h_{2} F_{2}\right)}{\partial q_{3}}
\end{aligned}
$$

with the quality of approximation improving as $a \rightarrow 0$. The line integral over the remaining two sides is approximately $a^{2} \partial\left(h_{3} F_{3}\right) / \partial q_{2}$. Dividing by the area of the rectangle and passing to the limit $a \rightarrow 0$, we find that

$$
\operatorname{curl} \vec{F}(P) \cdot \hat{q}_{1}=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial\left(h_{3} F_{3}\right)}{\partial q_{2}}-\frac{\partial\left(h_{2} F_{2}\right)}{\partial q_{3}}\right) h_{1}
$$

The other two components, $\operatorname{curl} \vec{F}(P) \cdot \hat{q}_{2}$ and $\operatorname{curl} \vec{F} \cdot \hat{q}_{3}$ are computed similarly. As a result,

$$
\operatorname{curl} \vec{F}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{q}_{1} & h_{2} \hat{q}_{2} & h_{3} \hat{q}_{3} \\
\frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\
h_{1} F_{1} & h_{2} F_{2} & h_{3} F_{3}
\end{array}\right| .
$$

