
Differentiation in non-Cartesian coordinates.

We have Cartesian coordinates (x = x1, y = x2, z = x3) and another coordinate system Q =
(q1, q2, q3) so that

xk = χk(q1, q2, q3), k = 1, 2, 3.

Consider a point with Q coordinates q1 = c1, q2 = c2, q3 = c3 and the corresponding Cartesian
coordinates x1 = χ1(c1, c2, c3), x2 = χ2(c1, c2, c3), x3 = χ3(c1, c2, c3). The Q-coordinate curves
through this point in the Q coordinates are ~r1(t) = (c1 + t, c2, c3), ~r2(t) = (c1, c2 + t, c3), ~r3(t) =
(c1, c2, c3 + t). The same curves in Cartesian coordinates are

~r1(t) = 〈χ1(c1 + t, c2, c3), χ2(c1 + t, c2, c3), χ3(c1 + t, c2, c3)〉,
~r2(t) = 〈χ1(c1, c2 + t, c3), χ2(c1, c2 + t, c3), χ3(c1, c2 + t, c3)〉,
~r3(t) = 〈χ1(c1, c2, c3 + t), χ2(c1, c2, c3 + t), χ3(c1, c2, c3 + t)〉.

We have the corresponding unit vectors q̂1, q̂2, q̂3 in the direction of ~r1
′(0), ~r2

′(0), ~r3
′(0), respectively,

and the numbers hk = ‖~rk
′(0)‖, k = 1, 2, 3. Note that, to compute the length of ~rk

′(0), we have to
write ~rk in Cartesian coordinates.

We assume that the Q-system is orthogonal, that is, q̂k · q̂n = 0 for k 6= k. Both
cylindrical and spherical coordinates are orthogonal.

Coords Q (q1, q2, q3) h1 h2 h3

Cylindrical (r, θ, z) 1 r 1
Spherical (r, θ, ϕ) 1 r sin ϕ r

If we have a scalar function f defined at different points in space, then the values of the function
and of its gradient do not depend on the coordinate system, but the representations of the function
and its gradient depend on the coordinate system. For example, if f = x + yz = x1 + x2x3

in Cartesian coordinates and q1 = r, q2 = θ, q3 = ϕ are the spherical coordinates, then x1 =
r cos θ sin φ, x2 = r sin θ sin ϕ, x3 = r cos φ, and f = r cos θ sin ϕ + r2 sin θ sin ϕ cos ϕ. We can then
compute partial derivatives fxk

, which immediately give us the gradient in the Cartesian coordinates,
but it is not at all clear how the partial derivative fr, fθ, and fϕ relate to the gradient of f in the
spherical coordinates.

Consider a function with a given representation f = f(q1, q2, q3) in the Q coordinates and consider
the point in space with Q coordinates q1 = c1, q2 = c2, q3 = c3. Since the Q coordinates are
orthogonal, we have the expression for the gradient as

∇f(c1, c2, c3) = (∇f(c1, c2, c3) · q̂1)q̂1 + (∇f(c1, c2, c3) · q̂2)q̂2 + (∇f(c1, c2, c3) · q̂3)q̂3.

We need to write ∇f(c1, c2, c3) · q̂k in terms of the partial derivatives of f with respect to its
variables q1, q2, q3 at the point (c1, c2, c3). To this end, consider the functions gk(t) = f(~rk(t)),
k = 1, 2, 3. For example, g1(t) = f(c1 + t, c2, c3). Then

g′k(0) = ∇f(c1, c2, c3) · ~rk
′(0) = hk∇f(c1, c2, c3) · q̂k.

On the other hand, the special form of the vectors ~rk(t), together with the definition of the partial
derivative, implies that

g′k(0) =
∂f(c1, c2, c3)

∂qk

.

For example,

g′1(0) = lim
t→0

f(c1 + t, c2, c3)− f(c1, c2, c3)

t
=

∂f(c1 + t, c2, c3)

∂q1

.

As a result, hk∇f(c1, c2, c3) · q̂k = ∂f(c1,c2,c3)
∂qk

, and so

∇f =
1

h1

∂f

∂q1

q̂1 +
1

h2

∂f

∂q2

q̂2 +
1

h3

∂f

∂q3

q̂3,

where f = f(q1, q2, q3) is the representation of the function in the Q coordinates.
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For example, if the function f is originally defined in Cartesian coordinates by

f = x + yz

then

f = r cos θ sin ϕ + r2 sin θ sin ϕ cos ϕ = r cos θ sin ϕ +
r2

2
sin θ sin 2ϕ,

and

∇f =
∂f

∂r
r̂ +

1

r sin ϕ

∂f

∂θ
θ̂ +

1

r

∂f

∂ϕ
ϕ̂

= (cos θ sin ϕ + r sin θ sin 2ϕ)r̂ + (− sin θ + r cos θ cos ϕ)θ̂ + (cos θ cos ϕ + r sin θ cos 2ϕ)ϕ̂.

Next, we derive the expression for the divergence in Q coordinates. Recall that, to compute
the divergence in the cartesian coordinates, we consider a family of shrinking cubes with faces
parallel to the coordinate planes. The same approach works in any coordinates by considering
rectangular boxes whose sides are parallel to the local basis vectors q̂1, q̂2, q̂3. Let P be a point with
Q coordinates (c1, c2, c3), and, for sufficiently small a > 0, consider a rectangular box with vertices
at the points with the Q coordinates (c1 ± (a/2), c2 ± (a/2), c3 ± (a/2)). The volume of this box
is approximately a3|~r1

′(0) · (~r2
′(0) × ~r3

′(0))| = a3h1h2h3 Because the vectors q̂k are orthogonal,
the vector q̂k is normal to two of the faces so that the area of each of those faces is approximately
a2hmhn, where k 6= m 6= n. Consider a continuously differentiable vector field ~F written in the Q
coordinates as ~F (q1, q2, q3) = F1(q1, q2, q3) q̂1 + F2(q1, q2, q3) q̂2 + F3(q1, q2, q3) q̂3. Then the flux of
this vector field through the pair of faces with the normal vector q̂1 is approximately

a2
(
h2

(
c1 + (a/2), c2, c3

)
h3

(
c1 + (a/2), c2, c3

)
F1

(
c1 + (a/2), c2, c3

)

−h2

(
c1 − (a/2), c2, c3

)
h3

(
c1 − (a/2), c2, c3

)
F1

(
c1 − (a/2), c2, c3

))

≈ a3∂(h2h3F1)

∂q1

,

with the approximation getting better as a → 0. Similar expressions hold for the fluxes across the
other two pairs of faces. Summing up all the fluxes, dividing by the volume of the box, and passing
to the limit a → 0, we get the formula for the divergence of ~F in Q coordinates:

div ~F =
1

h1h2h3

(
∂(h2h3F1)

∂q1

+
∂(h1h3F2)

∂q2

+
∂(h1h2F3)

∂q3

)
.

In particular, in cylindrical coordinates,

div ~F =
1

r

(
∂(rF1)

∂r
+

∂F2

∂θ
+

∂(rF3)

∂z

)
;

in spherical coordinates,

div ~F =
1

r2 sin ϕ

(
∂(r2 sin ϕF1)

∂r
+

∂(rF2)

∂θ
+

∂(r sin ϕF3)

∂ϕ

)
.

Recall that the Laplacian ∇2f of a scalar field f is defined in every coordinate system as ∇2f =
div(gradf). Let f = f(q1, q2, q3) be a scalar field defined in an orthogonal coordinate system Q.
The

∇2f =
1

h1h2h3

(
∂

∂q1

(
h2h3

h1

∂f

∂q1

)
+

∂

∂q2

(
h1h3

h2

∂f

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂f

∂q3

))
.

In particular, in cylindrical coordinates,

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+

∂2f

∂z2
;

in spherical coordinates,

∇2f =
1

r2

(
∂

∂r
r2∂f

∂r

)
+

1

r2 sin2 ϕ

∂2f

∂θ2
+

1

r2 sin ϕ

∂

∂ϕ

(
sin ϕ

∂f

∂ϕ

)
.

Next, we derive the formula for the curl. Consider a continuously differentiable vector field ~F
written in the Q coordinates as ~F (q1, q2, q3) = F1(q1, q2, q3) q̂1 +F2(q1, q2, q3) q̂2 +F3(q1, q2, q3) q̂3. Let
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us compute curl~F (P ) · q̂1, where the point P has Q-coordinates (c1, c2, c3). For a sufficiently small
a > 0, consider a rectangle spanned by the vectors a~r′k(0), k = 2, 3, so that P is at the center of the
rectangle. The vertices of the rectangle have the Q coordinates (c1, c2 ± (a/2), c3 ± (a/2)) and the

area of this rectangle is approximately a2h2h3. The line integral of ~F along the two sides parallel
to q̂2 is approximately

a
(
h2

(
c1, c2, c3 − (a/2)

)
F2

(
c1, c2, c3 − (a/2)

)

− h2

(
c1, c2, c3 + (a/2)

)
F2

(
c1, c2, c3 + (a/2)

))

≈ −a2∂(h2F2)

∂q3

,

with the quality of approximation improving as a → 0. The line integral over the remaining two
sides is approximately a2∂(h3F3)/∂q2. Dividing by the area of the rectangle and passing to the limit
a → 0, we find that

curl~F (P ) · q̂1 =
1

h1h2h3

(
∂(h3F3)

∂q2

− ∂(h2F2)

∂q3

)
h1

The other two components, curl ~F (P ) · q̂2 and curl~F · q̂3 are computed similarly. As a result,

curl~F =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣

h1q̂1 h2q̂2 h3q̂3

∂
∂q1

∂
∂q2

∂
∂q3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣∣∣

.


