
MATH 445

THE CRANK-NICOLSON SCHEME FOR THE HEAT EQUATION

Consider the one-dimensional heat equation

(1) ut(x, t) = auxx(x, t); 0 < x < L, 0 < t ≤ T ; u(0, t) = u(L, t) = 0; u(x, 0) = f(x),

The idea is to reduce this PDE to a system of ODEs by discretizing the equation in space, and then
apply a suitable numerical method to the resulting system of ODEs.

Denote by ∆x = L/N the step size in space and approximate uxx(n∆x, t) for every t ∈ [0, T ]
using central differences:

(2) uxx(n∆x, t) ≈ 1

(∆x)2
(u((n + 1)∆x, t)− 2u(n∆x, t) + u((n− 1)∆x, t)) .

Define the column vector U(t) = (U1(t), . . . , UN−1(t))
T as the solution of the system of equations

(3)
dUn(t)

dt
=

a

(∆x)2

(
Un+1(t)− 2Un(t) + Un−1(t)

)
, n = 1, . . . , N − 1, 0 < t ≤ T,

with initial condition Un(0) = f(n∆x), and set U0(t) = UN(t) = 0 for all t. By (2), it is natural
to consider Un(t) as an approximation of u(n∆x, t). Note that, from the definition of U and the
boundary conditions for u, we have u(0, t) = 0 = U0(t) and u(N∆x, t) = u(L, t) = 0 = UN(t) for
all t.

In the matrix form, (3) becomes

(4)
dU(t)

dt
=

a

(∆x)2
A

[−2,1]
N−1 U(t), 0 < t ≤ T,

where A
[−2,1]
N−1 is a tri-diagonal square matrix of the size (N − 1)× (N − 1):

(5) A
[−2,1]
N−1 =




−2 1 0 · · · 0
1 −2 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . 1
0 · · · · · · 0 1 −2




.

Next, we discretize time by introducing a uniform grid with step ∆t = T/M . By (4),

(6) U((m + 1)∆t) = U(m∆t) +
a

(∆x)2

∫ (m+1)∆t

m∆t

A
[−2,1]
N−1 U(s)ds.

We approximate the integral on the right-hand side of (6) by the trapezoidal rule:

(7) U((m + 1)∆t) ≈ U(m∆t) +
a∆t

2(∆x)2

(
A

[−2,1]
N−1 U(m∆t) + A

[−2,1]
N−1 U((m + 1)∆t)

)
.

To proceed, let us introduce the notation

r =
a∆t

2(∆x)2
.
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Now define the sequence of vectors ū(m), m = 0, . . . , M , by ūn(0) = f(n∆x) (f is the initial
condition from (1)), and

(8) ū(m + 1) = ū(m) + r
(
A

[−2,1]
N−1 ū(m) + A

[−2,1]
N−1 ū(m + 1)

)
.

According to (7), ū(m) can be considered an approximation of U(m∆t), and therefore ūn(m) is
an approximation of u(n∆x,m∆t). Similar to the vector U , the vector ū(m) in (8) has N − 1
components ū1(m), . . . , ūN−1(m). The resulting approximation of the solution of equation (2) at
time m∆t and points n∆x, n = 0, . . . , N , is (0, ū1(m), . . . , ūN−1(m), 0).

To compute ū(m), note that (8) can be written as follows:

(9) A
[1+2r,−r]
N−1 ū(m + 1) = A

[1−2r,r]
N−1 ū(m),

where, similar to (5),
(10)

A
[1+2r,−r]
N−1 =




1 + 2r −r 0 · · · 0
−r 1 + 2r −r 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . −r
0 · · · · · · 0 − r 1 + 2r




, A
[1−2r,r]
N−1 =




1− 2r r 0 · · · 0
r 1− 2r r 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . r
0 · · · · · · 0 r 1− 2r




(VERIFY THIS!!!)
and therefore

(11) ū(m + 1) =
(
A

[1+2r,−r]
N−1

)−1

A
[1−2r,r]
N−1 ū(m)

The method of computing an approximation of the solution of (1) according to (11) is called the
Crank-Nicolson scheme. It was proposed in 1947 by the British physicists John Crank (b. 1916)
and Phyllis Nicolson (1917–1968).


