MATH 445

THE CRANK-NICOLSON SCHEME FOR THE HEAT EQUATION

Consider the one-dimensional heat equation

$$
\begin{equation*}
u_{t}(x, t)=a u_{x x}(x, t) ; 0<x<L, 0<t \leq T ; u(0, t)=u(L, t)=0 ; u(x, 0)=f(x) \tag{1}
\end{equation*}
$$

The idea is to reduce this PDE to a system of ODEs by discretizing the equation in space, and then apply a suitable numerical method to the resulting system of ODEs.

Denote by $\Delta x=L / N$ the step size in space and approximate $u_{x x}(n \Delta x, t)$ for every $t \in[0, T]$ using central differences:

$$
\begin{equation*}
u_{x x}(n \Delta x, t) \approx \frac{1}{(\Delta x)^{2}}(u((n+1) \Delta x, t)-2 u(n \Delta x, t)+u((n-1) \Delta x, t)) \tag{2}
\end{equation*}
$$

Define the column vector $U(t)=\left(U_{1}(t), \ldots, U_{N-1}(t)\right)^{T}$ as the solution of the system of equations

$$
\begin{equation*}
\frac{d U_{n}(t)}{d t}=\frac{a}{(\Delta x)^{2}}\left(U_{n+1}(t)-2 U_{n}(t)+U_{n-1}(t)\right), n=1, \ldots, N-1,0<t \leq T \tag{3}
\end{equation*}
$$

with initial condition $U_{n}(0)=f(n \Delta x)$, and set $U_{0}(t)=U_{N}(t)=0$ for all t. By (2), it is natural to consider $U_{n}(t)$ as an approximation of $u(n \Delta x, t)$. Note that, from the definition of U and the boundary conditions for u, we have $u(0, t)=0=U_{0}(t)$ and $u(N \Delta x, t)=u(L, t)=0=U_{N}(t)$ for all t.

In the matrix form, (3) becomes

$$
\begin{equation*}
\frac{d U(t)}{d t}=\frac{a}{(\Delta x)^{2}} A_{N-1}^{[-2,1]} U(t), 0<t \leq T \tag{4}
\end{equation*}
$$

where $A_{N-1}^{[-2,1]}$ is a tri-diagonal square matrix of the size $(N-1) \times(N-1)$:

$$
A_{N-1}^{[-2,1]}=\left(\begin{array}{rrrrr}
-2 & 1 & 0 & \cdots & 0 \tag{5}\\
1 & -2 & 1 & 0 & \cdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 01 & -2
\end{array}\right) .
$$

Next, we discretize time by introducing a uniform grid with step $\Delta t=T / M$. By (4),

$$
\begin{equation*}
U((m+1) \Delta t)=U(m \Delta t)+\frac{a}{(\Delta x)^{2}} \int_{m \Delta t}^{(m+1) \Delta t} A_{N-1}^{[-2,1]} U(s) d s \tag{6}
\end{equation*}
$$

We approximate the integral on the right-hand side of (6) by the trapezoidal rule:

$$
\begin{equation*}
U((m+1) \Delta t) \approx U(m \Delta t)+\frac{a \Delta t}{2(\Delta x)^{2}}\left(A_{N-1}^{[-2,1]} U(m \Delta t)+A_{N-1}^{[-2,1]} U((m+1) \Delta t)\right) \tag{7}
\end{equation*}
$$

To proceed, let us introduce the notation

$$
r=\frac{a \Delta t}{2(\Delta x)^{2}}
$$

Now define the sequence of vectors $\bar{u}(m), m=0, \ldots, M$, by $\bar{u}_{n}(0)=f(n \Delta x)(f$ is the initial condition from (1)), and

$$
\begin{equation*}
\bar{u}(m+1)=\bar{u}(m)+r\left(A_{N-1}^{[-2,1]} \bar{u}(m)+A_{N-1}^{[-2,1]} \bar{u}(m+1)\right) . \tag{8}
\end{equation*}
$$

According to (7), $\bar{u}(m)$ can be considered an approximation of $U(m \Delta t)$, and therefore $\bar{u}_{n}(m)$ is an approximation of $u(n \Delta x, m \Delta t)$. Similar to the vector U, the vector $\bar{u}(m)$ in (8) has $N-1$ components $\bar{u}_{1}(m), \ldots, \bar{u}_{N-1}(m)$. The resulting approximation of the solution of equation (2) at time $m \Delta t$ and points $n \Delta x, n=0, \ldots, N$, is $\left(0, \bar{u}_{1}(m), \ldots, \bar{u}_{N-1}(m), 0\right)$.

To compute $\bar{u}(m)$, note that (8) can be written as follows:

$$
\begin{equation*}
A_{N-1}^{[1+2 r,-r]} \bar{u}(m+1)=A_{N-1}^{[1-2 r, r]} \bar{u}(m), \tag{9}
\end{equation*}
$$

where, similar to (5),
(10)
$A_{N-1}^{[1+2 r,-r]}=\left(\begin{array}{rrrrr}1+2 r & -r & 0 & \cdots & 0 \\ -r & 1+2 r & -r & 0 \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & -r \\ 0 & \cdots & \cdots & 0-r & 1+2 r\end{array}\right), A_{N-1}^{[1-2 r, r]}=\left(\begin{array}{rrrrr}1-2 r & r & 0 & \cdots & 0 \\ r & 1-2 r & r & 0 \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & r \\ 0 & \cdots & \cdots & 0 r & 1-2 r\end{array}\right)$
(VERIFY THIS!!!)
and therefore

$$
\begin{equation*}
\bar{u}(m+1)=\left(A_{N-1}^{[1+2 r,-r]}\right)^{-1} A_{N-1}^{[1-2 r, r]} \bar{u}(m) \tag{11}
\end{equation*}
$$

The method of computing an approximation of the solution of (1) according to (11) is called the Crank-Nicolson scheme. It was proposed in 1947 by the British physicists John Crank (b. 1916) and Phyllis Nicolson (1917-1968).

