Model Question	$\mathcal{N}(\mu, \sigma^2), \sigma$ known	$\mathcal{N}(\mu, \sigma^2), \sigma$ unknown	$\mathcal{B}(1,p), p$ unknown
Point estimator	$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$	$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$	$\hat{p} = \frac{1}{n} \sum_{k=1}^{n} X_k$
		$s_n = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2}$	
		or	
		$s_n = \sqrt{\frac{1}{n-1} \left(\sum_{k=1}^n X_k^2 - n(\bar{X}_n)^2 \right)}$	
$100(1 - \alpha)\%$ confidence interval	for μ : $\bar{X}_n \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}$	for μ : $\bar{X}_n \pm \frac{s_n}{\sqrt{n}} t_{n-1,\alpha/2}$	for p : $\hat{p} \pm \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} z_{\alpha/2}$ provided $n\hat{p}(1-\hat{p})$ big enough
Total number N of samples to have the estimate	$w = \frac{\sigma}{\sqrt{N}} z_{\alpha/2}$ no need	$w = \frac{s_n}{\sqrt{N}} t_{n-1,\alpha/2}$ <i>n</i> preliminary samples	$w = \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{N}} z_{\alpha/2}$ can avoid
to within $\pm w$ with $100(1-\alpha)\%$ confidence	for preliminary sampling	N - n additional samples	preliminary sampling by taking $\hat{p} = 0.5$

Here $t_{n-1,\alpha/2}$ and $z_{\alpha/2}$ are taken from the tables. Remember that $t_{\infty,\alpha} = z_{\alpha}$ and, for large n, say, n > 30, $t_{n,\alpha} \approx z_{\alpha}$.