A Summary of The Cameron-Martin-Girsanov-Meyer Theorem(s).!

Cameron-Martin

Let W = W (t), t € [0,T], be a standard Brownian motion on a probability space (Q, F,P), and let & be the measure
generated by W on the spaces C([0,7T]) of continuous functions on [0, T]:

w(A) =P(W € A), A€ B(C([0,T))).
Given a function h € C([0,T1]), define the measure u; on C([0,T]) by
pn(A) =P(W +h € A), Ae B(C([0,T])).

Then the measure py, is absolutely continuous with respect to the measure p if and only if the function h has the
form h(t) = fot B (s)ds for some function b’ € L2((0,T)); in that case,

GHh (1) = exp (m:c) -3/ |h’<t>|2dt> Lz ec(o,T)). W)

The mapping x — I/ (x) is known as the Cameron-Martin functional or Paley-Wiener integral.

The original reference: Cameron, R. H.; Martin, W. T. (1944). ”Transformations of Wiener Integrals under
Translations”. Annals of Mathematics. 45 (2): 386-396.

Girsanov
W =W(¢), t € [0,T], be a standard Brownian motion on a stochastic basis (Q, F, {F: }+>0,P), and let h = h(t), t > 0,

be an adapted process satisfying
T
P </ RA(t) dt < oo) =1
0

Z(1) = exp (/Ot h(s)dW (s) — ;/Ot h2(s) ds) te[0,7T).

Define the process

IF
EZ(T) = 1, 2)

then the process W(t) = W(t) — fg h(s)ds, 0 <t < T, is a standard Brownian motion on the stochastic basis
(Q, F, {Fi}i1>0,P), with dP = Z(T)dP. In particular,
o If &, is a bounded functional on C([0,¢]), t < T, then
E® (W) = E@,(W) = E(0,(W)Z(T) ) = E(@(W)Z(1)), (3)

where the last equality follows from the martingale property of Z.
e If 7 is a stopping time, with P(r < T') = 1, and ( is an F,-measurable random variable, then

B¢ =E(¢2(r)). (4)

The original reference: Girsanov, I. V. (1960). ”On transforming a certain class of stochastic processes by abso-
lutely continuous substitution of measures”. Theory of Probability and Its Applications. 5 (3): 285-301.

Note that dZ(t)

= h(t)Z(t)dW(t), Z(0) =1, so that Z is a non-negative local martingale (and thus a supermartin-
gale). Condition (2)

means that 7 is, in fact, a martingale. Novikov’s condition

E exp (; /OT h2(s) ds) < 400 (5)

is sufficient for (2) to hold; on the one hand, (5) is far from necessary, but, on the other hand, (5) cannot, in general,
be relaxed even as far as the factor 1/2. A detailed discussion is in Section 6.2 of Statistics of Random Processes by
Liptser and Shiryaev.
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An SODE version of Girsanov by Liptser and Shiryaev

Let W =W (t), t € [0,T], be a standard Brownian motion on a stochastic basis (Q, F, {F;}+>0,P) and let b = b(¢, z),
o =o(t,x),h = h(t,z) be non-random functions such that each of the following equations

dX = b(t, X)dt + o(t, X)dW (t), dY = B(t,Y)dt + o(t,Y)dW, where B(t,z) = b(t, ) + h(t,z)o(t, ),

has a unique strong solution on [0, 7] for some non-random T' < oo. For 0 < ¢ < T define the process

2(t) = exp ( / (s, Y (9) = B, Y() 1y ! / D(5.Y(s)) — B*(5,Y(5) ds) -

02(s,Y(s)) 02(s,Y(s))
If we solve for dY in terms of dW, then
t 1/t
Z(t) = exp (—/ h(s,Y (s))dW (s) — 5/ h%(s,Y (s)) ds) , t€0,T).
IF we assume that dP = Z (T')dP defines a new probability measure, then, by Girsanov, W t)+ fo ds
is a standard Brownian motion on (2, F, IP’). On the other hand,
dY = B(t,Y)dt + o(t,Y)dW = b(t,Y)dt + o(t,Y)(h(t,Y)dt + dW) = b(t, Y )dt + o(t, Y)dW7

that is, the equation satisfied by X on (2, F,P) is the same as the equation satisfied by Y on (Q,F, ﬁ) and so
E®(X) = E®(Y). The main result is that we do have EZ(T) = 1; the details are in Chapter 7 of Statistics of
Random Processes by Liptser and Shiryaev, in particular, Theorem 19. Accordingly, if X (0) = Y(0), then

e Similar to (3), for every bounded measurable functional ® on C([0,77),
E®(X) = E(@(Y)Z(T)); (7)
e Similar to (4), for every bounded stopping time 7 and an F,-measurable random variable ¢,
B¢ =E(¢z(r). (8)
Meyer.

Let F = (€, F, {Fi}i>0,P) be a stochastic basis with the usual assumptions, let Z be a non-negative random variable
with EZ = 1, and let the martingale Z = Z(t) be the right-continuous version of E(Z|F;). Define the probability
measure P by dP = ZdP. If M is a local martingale on F = (€, F, {Fi}+>0,P) and the measures P and P are
equivalent, then the process M=M (t) defined by

is a local martingale on (Q, F, {F}i>0, P).

For a cadlag semi-martingale X, the process ¢ — [X, X]|(t) is the quadratic variation of X: [X, X](t) = (X +
D et (X(s) - X(s-))Q; it is the “corrector” in the It6 formula applied to X?2:

X2(t) = X%(0) + 2/t X(s-)dX(s) + [X, X](t);
0

similarly, [X,Y] = (1/4)([X +Y,X +Y] - [X —=Y,X —Y]). If X is a local square-integrable martingale then
X, X] = < R becaube in this case X?—[X, X] is a local martmgale [L-Sh-Mart, Thm. 1.8.1]; if X (¢ fo

and Y (¢ fo , then [X,Y](t) = (X,Y); = fo g(s)ds. In particular, in the settlng of the Glrsanov
theorem M = W dZ thW, so that d[Z, M|(t) = h(t)Z(t )dt

Some examples.

Crossing a linear boundary. If W = W (t) is the standard Brownian motion on (0, F,P) and 7 = inf{t > 0 :
W (t) = a + bt}, with a,b > 0 and inf{Q} = +oo, then P(1 < +00) = e~2.
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Indeed, for ¢ € R, define W,(t) = W(t) + ct, and, for a continuous adapted process X = X (t), set 7,(X) = inf{t >
0: X(t) = a}. Then P(r < +00) = P(1,(W_p) < +00). By (7) and (8), with X = W_; and Y = W}, [so that
b(t,z) = =b, B(t,z) = b,o(t,x) = 1], for every n > 0,

P(ra(W_p) <n) = E(I(Ta(Wb) < n)e~ W (ra(Wb))) _ E(I(Ta(Wb) < n)e—2ab)7

where the last equality is a consequence of X(7,(X)) = a. After passing to the limit as n — oo, we conclude
that P(1 < +o00) = e‘zab]P’(Ta(Wb) < —|—oo), and it remains to note that, with b > 0, the process W, satisfies
lim;_, oo Wp(t)/t = b and therefore reaches every fixed positive level a with probability one: P(Ta(Wb) < —|—oo) =1.

A Cameron-Martin formula. If W = W (t) is the standard Brownian motion on (2, F,P), then

1t 1
Eexp (—2/0 W=(t) dt) = W(T). 9)

Indeed, take a b € R and consider dX (t) = dW (t), dY (t) = bY (t)dt + dW (t), X(0) =Y (0) =0 [so that b=0, o =
1, B(t,z) = bx]. We will apply (7) with

T T T
Z(T) = exp (b/o Y(t)dY(t)+b22/0 Y2 (t) dt), Or(X) = exp (;/0 X2(t) dt).

T T

E®,(X) = Eexp <—; Y2(t)dt —b [ Y(t)dY(t) + g /T Y2(t) dt) .

Then

Taking b = —1 we get
E®r(X) = Eexp (/0 Y (t) dY(t)> =Eexp (Y(TQ)_T> , (10)

where the second equality follows from the It6 formula.

Next, we note that
t
Y1) = / e~ (s),
0

so that Y(T') is a Gaussian random variable with mean zero and variance fOT e 2I=9) ds = (1 — e~27)/2. On the

other hand, if ¢ is a Gaussian random variable with mean zero and variance p?, then, for every 0 < r < p~2,

1 oo 2. 1 1
Eers’/2 = / e~ (P2 gy = = .
V2rp Joo VoRp2 =) 1—rp?
Using this result with r = 1 and p = (1 — e=27) /2, we conclude the computation in (10):
1 — e 2T\ /2 eT — =T\ /2 1
Ber(x) = T2 (1- 10— ) = (oS5 -
7(X) 2 2 \/cosh(T)

Note that

e The choice b = 1 will not change the final result: we only need b = 1 to cancel the integrals;
e Self-similarity of the Brownian motion (¢ — VAW (t/)\) is a standard Brownian motion for every A > 0)
implies a more general version of (9):

A2t 1
Eexp | —— W2t)dt | = ————.
2 Jo cosh(AT)

The people
William Ted Martin (1911-2004): MIT math department chair 1947-1968.

Robert Horton Cameron (1908-1989): supervised 35 Ph.D. students in 30+ years at the University of Minnesota;
one of the students was M. Donsker.

Igor Vladimirovich Girsanov (1934-1967): introduced the concept of a strong Feller process.
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Paul-André Meyer (1934-2003): until 1952, his last name was Meyerowitz; Probabilités et Potentiel, joint with
Claude Dellacherie, consists of five volumes; played the violin, viola, and the flute.

Some (informal) proofs.

Change of measure in conditional expectation. If d]f’:: ZdP for some positive random variable Z with EZ = 1,
and G is a sigma-algebra of sub-sets of 2, then, for every P-integrable random variable (,

B(c/g) I?E((CZZ'QQ)) (11)

Proof. Re-write (11) as E(¢|G)E(Z|G) = E(CZ|G), multiply both sides by a G-measurable random variable 7, take
the E expectation on both sides, keeping in mind that E(n{Z) = E(n(¢), and confirm that both sides are equal to

E(1¢).

The Ito formula. If M = M(¢) is a continuous martingale and F = F(¢,z) is a function that is continuously
differentiable in ¢ and twice continuously differentiable in x, then

F(t, M(t)) = F(0,M(0)) + /0 Fy(s, M(s)) ds + /0 FI(M(S))dM(s)—i—% /O Foo(M(s)) d(M)s.  (12)

Proof. Let 0 =tg <t < -+ <t, =t, Aty =tgs1 — te, AMy = M(tg4+1) — M(tg). By Taylor formula
F(tgs1, M(tgs1)) = F(te + Otg, M (tp) + AMy))
1
~ F(te, M(t)) + Fy(te, M(ty)) Oty + Fy (M (t)) AM;, + 5 Fea (M (1)) (AM)?,

and then (12) follows from the equality (M), = lim >, (AMk)2 (in probability)?

max At —0

Similarly, for continuous semi-martingales X, Y, d(XY) = XdY + YdX + d{(X¢,Y°).

Lévy’s characterization of the Brownian motion. If W = W () is a continuous square-integrable martingale
with W(0) = 0 and (W), =t (a.k.a. Wiener process), then W is a Gaussian process with mean zero and
E|W (t) — W(s)|* = |t — s| (a.k.a. Brownian motion).

Proof. We only need to show that W is a Gaussian process, which will follow from

E(eA(W(t)fw(s))U_—s) — N2 s (13)
for all A € R, because (13) means that W has increments that are Gaussian and independent. Applying (12) to
F(t,z) = eA=(\*1/2) e conclude that M(t) = F(t,W(t)) is a martingale:

t
M@t)=1+ )\/ M(s)dW (s),
0

and then (13) follows.

Proof of Girsanov’s theorem. Using It6 formula,
AW = dW — hdt, dZ = hZdW, d(W Z) = ZdW + WdZ + hZdt = Z(1 + hW)dW,
so that the processes t — Z(t) and ¢ — W(t)Z(t) are martingales under P:
E(W(1)Z(1)|F.) = W(6)2(1), E(Z(1)|F.) = Z(s),
and then, using (11) with ¢ = W(t)jnd G = F,, we conclude that ¢t — ﬁ is a (continuous) martingale under P.
Next, because quadratic variation of W is t, Itd formula applied to Y (t) = W?2(t) —t gives dz = 2WdW, that is, the

process t — WQ(t) — t is a martingale under P. Then Lévy’s characterization implies that W is a Brownian motion
under P.

2Karatzas—Shreve, Brownian motion and stochastic calculus, Theorem 1.5.8.



