
A Summary of The Cameron-Martin-Girsanov-Meyer Theorem(s).1

Cameron-Martin

Let W = W (t), t ∈ [0, T ], be a standard Brownian motion on a probability space (Ω,F ,P), and let µ be the measure
generated by W on the spaces C([0, T ]) of continuous functions on [0, T ]:

µ(A) = P(W ∈ A), A ∈ B
(
C([0, T ])

)
.

Given a function h ∈ C([0, T ]), define the measure µh on C([0, T ]) by
µh(A) = P(W + h ∈ A), A ∈ B

(
C([0, T ])

)
.

Then the measure µh is absolutely continuous with respect to the measure µ if and only if the function h has the

form h(t) =
∫ t

0
h′(s)ds for some function h′ ∈ L2((0, T )); in that case,

dµh

dµ
(x) = exp

(
Ih′(x)− 1

2

∫ T

0

|h′(t)|2 dt

)
, x ∈ C([0, T ]). (1)

The mapping x 7→ Ih′(x) is known as the Cameron-Martin functional or Paley-Wiener integral.

The original reference: Cameron, R. H.; Martin, W. T. (1944). ”Transformations of Wiener Integrals under
Translations”. Annals of Mathematics. 45 (2): 386–396.

Girsanov

W = W (t), t ∈ [0, T ], be a standard Brownian motion on a stochastic basis (Ω,F , {Ft}t≥0,P), and let h = h(t), t ≥ 0,
be an adapted process satisfying

P

(∫ T

0

h2(t) dt < ∞

)
= 1.

Define the process

Z(t) = exp

(∫ t

0

h(s)dW (s)− 1

2

∫ t

0

h2(s) ds

)
, t ∈ [0, T ].

IF

EZ(T ) = 1, (2)

then the process W̃ (t) = W (t) −
∫ t

0
h(s) ds, 0 ≤ t ≤ T, is a standard Brownian motion on the stochastic basis

(Ω,F , {Ft}t≥0, P̃), with dP̃ = Z(T )dP. In particular,

• If Φt is a bounded functional on C([0, t]), t ≤ T , then

EΦt(W ) = ẼΦt(W̃ ) = E
(
Φt(W̃ )Z(T )

)
= E

(
Φt(W̃ )Z(t)

)
, (3)

where the last equality follows from the martingale property of Z.
• If τ is a stopping time, with P(τ ≤ T ) = 1, and ζ is an Fτ -measurable random variable, then

Ẽζ = E
(
ζZ(τ)

)
. (4)

The original reference: Girsanov, I. V. (1960). ”On transforming a certain class of stochastic processes by abso-
lutely continuous substitution of measures”. Theory of Probability and Its Applications. 5 (3): 285–301.

Note that dZ(t) = h(t)Z(t)dW (t), Z(0) = 1, so that Z is a non-negative local martingale (and thus a supermartin-
gale). Condition (2) means that Z is, in fact, a martingale. Novikov’s condition

E exp

(
1

2

∫ T

0

h2(s) ds

)
< +∞ (5)

is sufficient for (2) to hold; on the one hand, (5) is far from necessary, but, on the other hand, (5) cannot, in general,
be relaxed even as far as the factor 1/2. A detailed discussion is in Section 6.2 of Statistics of Random Processes by
Liptser and Shiryaev.

1Sergey Lototsky, USC; updated on June 25, 2022
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An SODE version of Girsanov by Liptser and Shiryaev

Let W = W (t), t ∈ [0, T ], be a standard Brownian motion on a stochastic basis (Ω,F , {Ft}t≥0,P) and let b = b(t, x),
σ = σ(t, x), h = h(t, x) be non-random functions such that each of the following equations

dX = b(t,X)dt+ σ(t,X)dW (t), dY = B(t, Y )dt+ σ(t, Y )dW, where B(t, x) = b(t, x) + h(t, x)σ(t, x),

has a unique strong solution on [0, T ] for some non-random T < ∞. For 0 ≤ t ≤ T define the process

Z(t) = exp

(∫ t

0

b
(
s, Y (s)

)
−B

(
s, Y (s)

)
σ2
(
s, Y (s)

) dY (s)− 1

2

∫ t

0

b2
(
s, Y (s)

)
−B2

(
s, Y (s)

)
σ2
(
s, Y (s)

) ds

)
. (6)

If we solve for dY in terms of dW , then

Z(t) = exp

(
−
∫ t

0

h(s, Y (s))dW (s)− 1

2

∫ t

0

h2(s, Y (s)) ds

)
, t ∈ [0, T ].

IF we assume that dP̃ = Z(T )dP defines a new probability measure, then, by Girsanov, W̃ (t) = W (t)+
∫ t

0
h(s, Y (s)) ds

is a standard Brownian motion on (Ω,F , P̃). On the other hand,

dY = B(t, Y )dt+ σ(t, Y )dW = b(t, Y )dt+ σ(t, Y )(h(t, Y )dt+ dW ) = b(t, Y )dt+ σ(t, Y )dW̃ ,

that is, the equation satisfied by X on (Ω,F ,P) is the same as the equation satisfied by Y on (Ω,F , P̃) and so

EΦ(X) = ẼΦ(Y ). The main result is that we do have EZ(T ) = 1; the details are in Chapter 7 of Statistics of
Random Processes by Liptser and Shiryaev, in particular, Theorem 19. Accordingly, if X(0) = Y (0), then

• Similar to (3), for every bounded measurable functional Φ on C([0, T ]),

EΦ(X) = E
(
Φ(Y )Z(T )

)
; (7)

• Similar to (4), for every bounded stopping time τ and an Fτ -measurable random variable ζ,

Ẽζ = E
(
ζZ(τ)

)
. (8)

Meyer.

Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with the usual assumptions, let Z̃ be a non-negative random variable

with EZ̃ = 1, and let the martingale Z = Z(t) be the right-continuous version of E(Z̃|Ft). Define the probability

measure P̃ by dP̃ = ZdP. If M is a local martingale on F = (Ω,F , {Ft}t≥0,P) and the measures P̃ and P are

equivalent, then the process M̃ = M̃(t) defined by

M̃(t) = M(t)−
∫ t

0

d [Z,M ](s)

Z(s)
,

is a local martingale on (Ω,F , {Ft}t≥0, P̃).

For a cadlag semi-martingale X, the process t 7→ [X,X](t) is the quadratic variation of X: [X,X](t) = 〈Xc〉t +∑
s≤t

(
X(s)−X(s-)

)2
; it is the “corrector” in the Itô formula applied to X2:

X2(t) = X2(0) + 2

∫ t

0

X(s-) dX(s) + [X,X](t);

similarly, [X,Y ] = (1/4)
(
[X + Y,X + Y ] − [X − Y,X − Y ]

)
. If X is a local square-integrable martingale, then

[X,X] = 〈X〉, because in this case X2− [X,X] is a local martingale [L-Sh-Mart, Thm. 1.8.1]; if X(t) =
∫ t

0
f(s)dW (s)

and Y (t) =
∫ t

0
g(s)dW (s), then [X,Y ](t) = 〈X,Y 〉t =

∫ t

0
f(s)g(s) ds. In particular, in the setting of the Girsanov

theorem, M = W , dZ = hZdW , so that d[Z,M ](t) = h(t)Z(t)dt.

Some examples.

Crossing a linear boundary. If W = W (t) is the standard Brownian motion on (Ω,F ,P) and τ = inf{t > 0 :
W (t) = a+ bt}, with a, b > 0 and inf{∅} = +∞, then P(τ < +∞) = e−2ab.



3

Indeed, for c ∈ R, define Wc(t) = W (t) + ct, and, for a continuous adapted process X = X(t), set τa(X) = inf{t >
0 : X(t) = a}. Then P(τ < +∞) = P(τa(W−b) < +∞). By (7) and (8), with X = W−b and Y = Wb [so that
b(t, x) = −b,B(t, x) = b, σ(t, x) = 1], for every n > 0,

P
(
τa(W−b) < n

)
= E

(
I(τa(Wb) < n)e−2bWb

(
τa(Wb)

))
= E

(
I(τa(Wb) < n)e−2ab

)
,

where the last equality is a consequence of X(τa(X)) = a. After passing to the limit as n → ∞, we conclude
that P(τ < +∞) = e−2abP

(
τa(Wb) < +∞

)
, and it remains to note that, with b > 0, the process Wb satisfies

limt→∞ Wb(t)/t = b and therefore reaches every fixed positive level a with probability one: P
(
τa(Wb) < +∞

)
= 1.

A Cameron-Martin formula. If W = W (t) is the standard Brownian motion on (Ω,F ,P), then

E exp

(
−1

2

∫ T

0

W 2(t) dt

)
=

1√
cosh(T )

. (9)

Indeed, take a b ∈ R and consider dX(t) = dW (t), dY (t) = bY (t)dt+ dW (t), X(0) = Y (0) = 0 [so that b = 0, σ =
1, B(t, x) = bx]. We will apply (7) with

Z(T ) = exp

(
−b

∫ T

0

Y (t) dY (t) +
b2

2

∫ T

0

Y 2(t) dt

)
, ΦT (X) = exp

(
−1

2

∫ T

0

X2(t) dt

)
.

Then

EΦT (X) = E exp

(
−1

2

∫ T

0

Y 2(t) dt− b

∫ T

0

Y (t) dY (t) +
b2

2

∫ T

0

Y 2(t) dt

)
.

Taking b = −1 we get

EΦT (X) = E exp

(∫ T

0

Y (t) dY (t)

)
= E exp

(
Y 2(T )− T

2

)
, (10)

where the second equality follows from the Itô formula.

Next, we note that

Y (t) =

∫ t

0

e−(t−s)dW (s),

so that Y (T ) is a Gaussian random variable with mean zero and variance
∫ T

0
e−2(T−s) ds = (1 − e−2T )/2. On the

other hand, if ζ is a Gaussian random variable with mean zero and variance ρ2, then, for every 0 < r < ρ−2,

Eerζ
2/2 =

1√
2π ρ

∫ +∞

−∞
e−(ρ−2−r)x2/2 dx =

1√
ρ2(ρ−2 − r)

=
1√

1− rρ2
.

Using this result with r = 1 and ρ = (1− e−2T )/2, we conclude the computation in (10):

EΦT (X) = e−T/2

(
1− 1− e−2T

2

)−1/2

=

(
eT − eT − e−T

2

)−1/2

=
1√

cosh(T )
.

Note that

• The choice b = 1 will not change the final result: we only need b2 = 1 to cancel the integrals;
• Self-similarity of the Brownian motion (t 7→

√
λW (t/λ) is a standard Brownian motion for every λ > 0)

implies a more general version of (9):

E exp

(
−λ2

2

∫ T

0

W 2(t) dt

)
=

1√
cosh(λT )

.

The people

William Ted Martin (1911–2004): MIT math department chair 1947–1968.

Robert Horton Cameron (1908–1989): supervised 35 Ph.D. students in 30+ years at the University of Minnesota;
one of the students was M. Donsker.

Igor Vladimirovich Girsanov (1934–1967): introduced the concept of a strong Feller process.
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Paul-André Meyer (1934–2003): until 1952, his last name was Meyerowitz; Probabilités et Potentiel, joint with
Claude Dellacherie, consists of five volumes; played the violin, viola, and the flute.

Some (informal) proofs.

Change of measure in conditional expectation. If dP̃ = ZdP for some positive random variable Z with EZ = 1,

and G is a sigma-algebra of sub-sets of Ω, then, for every P̃-integrable random variable ζ,

Ẽ(ζ|G) = E(ζZ|G)
E(Z|G)

. (11)

Proof. Re-write (11) as Ẽ(ζ|G)E(Z|G) = E(ζZ|G), multiply both sides by a G-measurable random variable η, take

the E expectation on both sides, keeping in mind that E(ηζZ) = Ẽ(ηζ), and confirm that both sides are equal to

Ẽ(ηζ).

The Itô formula. If M = M(t) is a continuous martingale and F = F (t, x) is a function that is continuously
differentiable in t and twice continuously differentiable in x, then

F
(
t,M(t)

)
= F

(
0,M(0)

)
+

∫ t

0

Ft

(
s,M(s)

)
ds+

∫ t

0

Fx

(
M(s)

)
dM(s) +

1

2

∫ t

0

Fxx

(
M(s)

)
d〈M〉s. (12)

Proof. Let 0 = t0 < t1 < · · · < tn = t, 4tk = tk+1 − tk, 4Mk = M(tk+1)−M(tk). By Taylor formula

F
(
tk+1,M(tk+1)

)
= F

(
tk +4tk,M(tk) +4Mk)

)
≈ F

(
tk,M(tk)

)
+ Ft

(
tk,M(tk)

)
4tk + Fx

(
M(tk)

)
4Mk +

1

2
Fxx

(
M(tk)

)(
4Mk

)2
,

and then (12) follows from the equality 〈M〉t = lim
max△tk→0

∑
k

(
4Mk

)2
(in probability)2

Similarly, for continuous semi-martingales X,Y , d(XY ) = XdY + Y dX + d〈Xc, Y c〉.

Lévy’s characterization of the Brownian motion. If W = W (t) is a continuous square-integrable martingale
with W (0) = 0 and 〈W 〉t = t (a.k.a. Wiener process), then W is a Gaussian process with mean zero and
E|W (t)−W (s)|2 = |t− s| (a.k.a. Brownian motion).

Proof. We only need to show that W is a Gaussian process, which will follow from

E
(
eλ
(
W (t)−W (s)

)
|Fs

)
= eλ

2(t−s)/2, t > s, (13)

for all λ ∈ R, because (13) means that W has increments that are Gaussian and independent. Applying (12) to

F (t, x) = eλx−(λ2t/2), we conclude that M(t) = F (t,W (t)) is a martingale:

M(t) = 1 + λ

∫ t

0

M(s)dW (s),

and then (13) follows.

Proof of Girsanov’s theorem. Using Itô formula,

dW̃ = dW − hdt, dZ = hZdW, d(W̃Z) = ZdW̃ + W̃dZ + hZdt = Z(1 + hW̃ )dW,

so that the processes t 7→ Z(t) and t 7→ W̃ (t)Z(t) are martingales under P:

E
(
W̃ (t)Z(t)|Fs

)
= W̃ (t)Z(t), E

(
Z(t)|Fs

)
= Z(s),

and then, using (11) with ζ = W̃ (t) and G = Fs, we conclude that t 7→ W̃ is a (continuous) martingale under P̃.
Next, because quadratic variation of W̃ is t, Itô formula applied to Y (t) = W̃ 2(t)− t gives dY = 2W̃dW̃ , that is, the

process t 7→ W̃ 2(t)− t is a martingale under P̃. Then Lévy’s characterization implies that W̃ is a Brownian motion

under P̃.

2Karatzas-Shreve, Brownian motion and stochastic calculus, Theorem 1.5.8.


