A note on characteristic functions.

By definition, the characteristic function of a (real-valued) random variable ξ is a (complexvalued) function φ of the real variable t :

$$
\varphi(t)=\mathbb{E} e^{\sqrt{-1} \xi t} .
$$

The definition immediately implies the following properties of ϕ :
(1) $\varphi(0)=1$
(2) $|\varphi(t)| \leq 1$ for all t;
(3) φ is (uniformly) continuous [check out the uniform part].

The main necessary and sufficient result is known as the Bochner-Khinchin theorem: a complexvalued function ϕ of a real variable t is a characteristic function of some random variable if and only if all the following three properties hold
(1) $\varphi(0)=1$
(2) φ is continuous for all t
(3) for every collection t_{1}, \ldots, t_{n} of real numbers the matrix $\left(\varphi\left(t_{i}-t_{j}\right), i, j=1, \ldots, n\right)$ is Hermitian and non-negative definite.

The third property is not so easy to verify. One famous sufficient condition is due to Polya: If $\varphi(t)$ is even, $\varphi(0)=1, \varphi$ is convex for $t>0$, and $\lim _{t \rightarrow+\infty} \varphi(t)=0$, then φ is a characteristic function of an absolutely continuous random variable. For more, see [1,3].
Here is a necessary condition [1, Theorem 4.1.1]: if φ is a characteristic function and $\varphi(t)=$ $1+o\left(t^{2}\right), t \rightarrow 0$, then $\varphi(t)=1$ for all t [indeed, the random variable with such a characteristic function must have zero mean and zero variance]. In particular, if $r>2$, then $e^{-|t|^{r}}$ is not a characteristic function.
Another necessary condition is due to Marcinkiewitz (see [2], no proof...): if $\varphi(t)=e^{p(t)}$ is a characteristic function and $p=p(t)$ is a polynomial, then the degree of p is at most 2. For example, $e^{-t^{2}-t^{4}}$ is not a characteristic function.
One more necessary condition is a consequence of trig identities: $\Re(1-\phi(t)) \geq \Re(1-\phi(2 t)) / 4$. Indeed, $\Re(1-\phi(t))=\mathbb{E}(1-\cos (t \xi))$, and

$$
4(1-\cos (t x))=8 \sin ^{2}(t x / 2) \geq 8 \sin ^{2}(t x / 2) \cos ^{2}(t x / 2)=2 \sin ^{2}(t x)=1-\cos (2 t x) .
$$

For real φ, this becomes

$$
3+\varphi(2 t) \geq 4 \varphi(t)
$$

An immediate consequence is that if $\varphi(t)=1$ in some neighborhood of $t=0$, then $\varphi(t)=1$ in twice that neighborhood, and then, by induction, for all $t \in \mathbb{R}$, so that $\xi=0$ with probability one.

Some other facts:
(1) If ξ is absolutely continuous, then $\lim _{|t| \rightarrow \infty}|\varphi(t)|=0$ [Riemann-Lebesque];
(2) If $\int_{-\infty}^{\infty}|\varphi(t)| d t<\infty$, then ξ is absolutely continuous with pdf

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-\sqrt{-1} t x} \varphi(t) d t .
$$

(3) If $\lim _{|t| \rightarrow \infty}|\varphi(t)|=0$, then ξ is continuous: $\mathbb{P}(\xi=a)=0$ for every $a \in \mathbb{R}$. Indeed, if $\mathbb{P}\left(\xi=a_{0}\right)=p_{0}$, then $\varphi(t)$ has a component $e^{\sqrt{-1} t a_{0}}$ that does not go to zero.
(4) It is possible to have a continuous random variable with $\lim _{\sup }^{|t| \rightarrow \infty}|\varphi(t)|=1$. For example, the random variable $\xi=\sum_{k=1}^{\infty} \varepsilon_{k} / k$!, where ε_{k} are iid taking values ± 1 with probability $1 / 2$, is continuous [because all converging sums of the form $\sum_{k} a_{k} \varepsilon_{k}$ are continuous], but, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \varphi(2 \pi n!)=\lim _{n \rightarrow \infty} \prod_{k=1}^{\infty} \cos (2 \pi n!/ k!)=1
$$

(5) With ε_{k} as above, it is known that a random variable $\xi=\sum_{k \geq 1} \varepsilon_{k} / a^{k}$ is singular if $a>2$; if $a>2$ is not an integer, then $|\varphi(t)|=O\left((\ln |t|)^{-r}\right),|t| \rightarrow \infty$ for some $r>0$ [not obvious]; for $a=2, \xi$ is uniform on $(-1,1)$ (and thus absolutely continuous) because
$\frac{\sin t}{t}=\frac{\sin (t / 2)}{t / 2} \cos (t / 2)=\frac{\sin (t / 4)}{t / 4} \cos (t / 2) \cos (t / 4)=\ldots=\frac{\sin \left(t / 2^{n}\right)}{t / 2^{n}} \prod_{k=1}^{n} \cos \left(t / 2^{k}\right) ;$
as $n \rightarrow \infty$, the right hand side converges to the characteristic function of ξ (with $a=2$); the left hand side is the characteristic function of the uniform on $(-1,1)$.
Question 1. Is $e^{-|t|-t^{4}}$ a characteristic function? [Technically, $|t|-t^{4}$ is not a polynomial...]
Question 2. Let X_{1}, X_{2}, \ldots be iid random variables with support on the standard mid-third Cantor set; the cdf of X_{1} is the Cantor ladder (or Devil's staircase...); the characteristic function of X_{1} is $\varphi(t)=e^{\sqrt{-1} t / 2} \prod_{k=1}^{\infty} \cos \left(t / 3^{k}\right)$. Does there exist an $n>1$ such that the sum $X_{1}+\ldots+X_{n}$ is absolutely continuous?

References.

[1] E. Lukacs. Characteristic Functions. Griffin, 1970. [Chapter 4]
[2] A. N. Shiryaev. Probability. Springer, 1996. [Section II.12]
[3] N. G. Ushakov. Selected topics in characteristic functions. VSP—Utrecht, 1999. [Section 1.3]

