A note on characteristic functions.

By definition, the characteristic function of a (real-valued) random variable & is a (complex-
valued) function ¢ of the real variable ¢:

o(t) = EeVTé,

The definition immediately implies the following properties of ¢:

(1) ¢(0) =1
(2) |p(t)] < 1forall t;
(3) ¢ is (uniformly) continuous [check out the uniform part].

The main necessary and sufficient result is known as the Bochner-Khinchin theorem: a complex-
valued function ¢ of a real variable t is a characteristic function of some random variable if and
only if all the following three properties hold

(1) ¢(0) =1

(2) ¢ is continuous for all ¢

(3) for every collection ¢y, ...,t, of real numbers the matrix (¢(t; —¢t;), 4,5 = 1,...,n) is
Hermitian and non-negative definite.

The third property is not so easy to verify. One famous sufficient condition is due to Polya: If
©(t) is even, ¢(0) = 1, ¢ is convex for t > 0, and lim; 1 ¢(t) = 0, then ¢ is a characteristic
function of an absolutely continuous random variable. For more, see [1,3].

Here is a necessary condition [1, Theorem 4.1.1]: if ¢ is a characteristic function and ¢(t) =
1+ o(t?),t — 0, then ¢(t) = 1 for all ¢ [indeed, the random variable with such a characteristic
function must have zero mean and zero variance]. In particular, if r > 2, then e7 " is not a
characteristic function.

Another necessary condition is due to Marcinkiewitz (see [2], no proof...): if o(t) = eP® is a
characteristic function and p = p(t) is a polynomial, then the degree of p is at most 2. For

42 44 . . . .
example, e7¥ 7" is not a characteristic function.

One more necessary condition is a consequence of trig identities: R(1 — ¢(t)) > R(1 — ¢(2t)) /4.
Indeed, R(1 — ¢(t)) = E(1 — cos(t£)), and
4(1 — cos(tz)) = 8sin®(tx/2) > 8sin’(tx/2) cos*(tx/2) = 2sin’(tx) = 1 — cos(2tx).
For real ¢, this becomes
34 p(21) = di(t).
An immediate consequence is that if ¢(¢) = 1 in some neighborhood of t = 0, then ¢(¢) = 1 in

twice that neighborhood, and then, by induction, for all ¢ € R, so that £ = 0 with probability
one.

Some other facts:

(1) If ¢ is absolutely continuous, then limy; . [¢(t)| = 0 [Riemann-Lebesque];
(2) If [ Jeo(t)|dt < oo, then ¢ is absolutely continuous with pdf

+o0
f@z%[ VT (1) dt.

(3) If limyy—oo [0(t)] = 0, then & is continuous: P({ = a) = 0 for every a € R. Indeed, if

P(¢ = ag) = po, then o(t) has a component eV~ that does not go to zero.
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(4) It is possible to have a continuous random variable with limsup,_, |¢(t)] = 1. For

example, the random variable £ = Y .2 e, /k!, where g, are iid taking values £1 with
probability 1/2, is continuous [because all converging sums of the form ), aey are con-
tinuous|, but, by the dominated convergence theorem,

lim ¢(27mn!) = lim Hcos 2l /k!) =

n—oo n—oo

(5) With &, as above, it is known that a random variable £ = 7, ., ex/a” is singular if a > 2;
if @ > 2 is not an integer, then |p(t)| = O((ln|t\)_T>, |t| — oo for some r > 0 [not
obvious|; for a = 2, £ is uniform on (—1,1) (and thus absolutely continuous) because

sint sin(t/2) cos(t/2) = sin(t/4)
t t/2 t/4

as n — 00, the right hand side converges to the characteristic functlon of ¢ (with a = 2);
the left hand side is the characteristic function of the uniform on (—1,1).

n

cos(t/2) cos(t/4) = ... = 811;2/311 Hcos (t/2%);

Question 1. Is e~ l1=t" a characteristic function? [Technically, |t| — ¢4 is not a polynomial.. ]

Question 2. Let Xi, X5, ... be iid random variables with support on the standard mid-third
Cantor set; the cdf of X; is the Cantor ladder (or Devil’s staircase...); the characteristic function

of Xy is ¢(t) = eV~ 1272, cos(t/3%). Does there exist an n > 1 such that the sum X, +...+X,
is absolutely continuous?
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