## MATH 445

## MOTION IN AN ATTRACTING INVERSE-SQUARE CENTRAL FIELD

The setting: the three-dimensional space with an attracting point object (mass or charge) placed at the origin of a coordinate system.

Equation of motion:

$$
\boldsymbol{r}^{\prime \prime}(t)=-\frac{c}{r^{3}} \boldsymbol{r}
$$

$c>0$ is a constant, $\boldsymbol{r}$ is the position vector, $r=\|\boldsymbol{r}\|$.
The goal: To show that the trajectories are conic sections (ellipse, hyperbola, or parabola)
Step 1: trajectories are in the same plane.
We note that

$$
\frac{d}{d t}\left(\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t)\right)=\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime}(t)+\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime \prime}(t)=\mathbf{0}-\frac{c}{r^{3}} \boldsymbol{r}(t) \times \boldsymbol{r}(t)=\mathbf{0} .
$$

Therefore

$$
\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t)=\boldsymbol{r}(0) \times \boldsymbol{r}^{\prime}(0)=\boldsymbol{h},
$$

a constant vector, determined by the initial conditions.
Thus $\boldsymbol{r}(t)$ is perpendicular to $\boldsymbol{h}$ for all $t \geq 0$, meaning that the motion is in the plane that passes through the origin and has $\boldsymbol{h}$ as the normal vector.

Step 2: an alternative representation of $\boldsymbol{h}$. Denote by $\hat{\boldsymbol{r}}(t)$ the vector $\boldsymbol{r}(t) / r(t)$, the unit vector in the direction of $r(t)$. Note that, in the central field, you are never hitting the origin, so $\hat{\boldsymbol{r}}(t)$ is always defined.

Then the claim is that

$$
\boldsymbol{h}=r^{2}(t) \hat{\boldsymbol{r}}(t) \times \hat{\boldsymbol{r}}^{\prime}(t)
$$

for all $t \geq 0$.
Indeed,

$$
\hat{\boldsymbol{r}}^{\prime}(t)=\frac{d}{d t}\left(\frac{\boldsymbol{r}(t)}{r(t)}\right)=\frac{\boldsymbol{r}^{\prime}(t)}{r(t)}-\frac{r^{\prime}(t) \boldsymbol{r}(t)}{r^{2}(t)},
$$

and therefore

$$
\hat{\boldsymbol{r}}(t) \times \hat{\boldsymbol{r}}^{\prime}(t)=\frac{\hat{\boldsymbol{r}}(t) \times \boldsymbol{r}^{\prime}(t)}{r(t)}-\frac{r^{\prime}(t) \hat{\boldsymbol{r}}(t) \times \boldsymbol{r}(t)}{r^{2}(t)}=\frac{\hat{\boldsymbol{r}}(t) \times \boldsymbol{r}^{\prime}(t)}{r(t)}=\frac{\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t)}{r^{2}(t)}=\frac{\boldsymbol{h}}{r^{2}(t)} .
$$

Step 3: an expression for $(\boldsymbol{r}(t) \times \boldsymbol{h})^{\prime}$.
First note that since $\boldsymbol{h}$ is a constant vector,

$$
\left(\boldsymbol{r}^{\prime}(t) \times \boldsymbol{h}\right)^{\prime}=\boldsymbol{r}^{\prime \prime}(t) \times \boldsymbol{h}
$$

Next, we use the equality

$$
\boldsymbol{r}^{\prime \prime}(t)=-\frac{c}{r^{2}(t)} \hat{\boldsymbol{r}}(t),
$$

from the equation of motion, as well as the equality

$$
\boldsymbol{h}=r^{2}(t) \hat{\boldsymbol{r}}(t) \times \hat{\boldsymbol{r}}^{\prime}(t)
$$

from the previous step, and the equality

$$
\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}
$$

which is a general property of the cross product. Then

$$
\begin{gathered}
\left(\boldsymbol{r}^{\prime}(t) \times \boldsymbol{h}\right)^{\prime}=\boldsymbol{r}^{\prime \prime}(t) \times \boldsymbol{h}=-\frac{c}{r^{2}(t)} \hat{\boldsymbol{r}}(t) \times\left(r^{2}(t) \hat{\boldsymbol{r}}(t) \times \hat{\boldsymbol{r}}^{\prime}(t)\right) \\
=-c \hat{\boldsymbol{r}}(t) \times\left(\hat{\boldsymbol{r}}(t) \times \hat{\boldsymbol{r}}^{\prime}(t)\right)=-c\left(\hat{\boldsymbol{r}}(t) \cdot \hat{\boldsymbol{r}}^{\prime}(t)\right) \hat{\boldsymbol{r}}(t)+c(\hat{\boldsymbol{r}}(t) \cdot \hat{\boldsymbol{r}}(t)) \hat{\boldsymbol{r}}^{\prime}(t) .
\end{gathered}
$$

Finally, we use the remarkable fact that

$$
0=\frac{d}{d t} 1=\frac{d}{d t}\|\hat{\boldsymbol{r}}(t)\|^{2}=\frac{d}{d t}(\hat{\boldsymbol{r}}(t) \cdot \hat{\boldsymbol{r}}(t))=2 \hat{\boldsymbol{r}}(t) \cdot \hat{\boldsymbol{r}}^{\prime}(t)
$$

that is

$$
\hat{\boldsymbol{r}}(t) \cdot \hat{\boldsymbol{r}}^{\prime}(t)=0
$$

As a result,

$$
\left(\boldsymbol{r}^{\prime}(t) \times \boldsymbol{h}\right)^{\prime}=c(\hat{\boldsymbol{r}}(t) \cdot \hat{\boldsymbol{r}}(t)) \hat{\boldsymbol{r}}^{\prime}(t)=c \hat{\boldsymbol{r}}^{\prime}(t)
$$

or

$$
\left(\boldsymbol{r}^{\prime}(t) \times \boldsymbol{h}\right)=\boldsymbol{b}+c \hat{\boldsymbol{r}}(t)
$$

where $\boldsymbol{b}=\left(\boldsymbol{r}^{\prime}(0) \times \boldsymbol{h}\right)-\hat{\boldsymbol{r}}(0)$ is a constant vector determined by the initial conditions.
Step 4: selecting the vectors $\boldsymbol{h}$ and $\boldsymbol{b}$ : Note that $\boldsymbol{b}$ is in the plane spanned by $\boldsymbol{r}(0)$ and $\boldsymbol{r}^{\prime}(0)$, and is therefore perpendicular to $\boldsymbol{h}$. Therefore we can choose our coordinate system so that $\boldsymbol{b}=b \hat{\boldsymbol{\imath}}$ and $\boldsymbol{h}=h \hat{\boldsymbol{\kappa}}$. With this coordinate system, the motion will take place in the ( $x, y$ ) plane.

Step 5: two ways to write $\boldsymbol{r}(t) \cdot\left(\boldsymbol{r}^{\prime}(t) \times \boldsymbol{h}\right)$
On the one hand, using the properties of the triple scalar product and the results of the first step,

$$
\left.\boldsymbol{r}(t) \cdot\left(\boldsymbol{r}^{\prime}(t) \times h\right)=\left(\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t)\right) \cdot \boldsymbol{h}\right)=\boldsymbol{h} \times \boldsymbol{h}=\|\boldsymbol{h}\|^{2}=h^{2} .
$$

On the other hand, from the previous step,

$$
\boldsymbol{r}(t) \cdot\left(\boldsymbol{r}^{\prime}(t) \times \boldsymbol{h}\right)=\boldsymbol{r}(t) \cdot \boldsymbol{b}+c \boldsymbol{r}(t) \cdot \hat{\boldsymbol{r}}(t)=b r(t) \cos \theta(t)+c r(t)=r(t)(b \cos \theta+c),
$$

where $b=\|\boldsymbol{b}\|$ and $\theta$ is the angle between $\boldsymbol{r}$ and $\boldsymbol{b}=\hat{\boldsymbol{\imath}}$ (the polar angle)

## Step 6: we are done:

$$
r(t)=\frac{h^{2}}{c+b \cos \theta(t)}
$$

or, with $A=h^{2} / c, \varepsilon=b / c$, and omitting the time,

$$
r=\frac{A}{1+\varepsilon \cos \theta}
$$

which is the equation of a conic section in the polar coordinates:

- circle if $\varepsilon=0$
- ellipse if $\varepsilon \in(0,1)$
- parabola if $\varepsilon=1$
- hyperbola if $\varepsilon>1$

