
MATH 445

MOTION IN AN ATTRACTING INVERSE-SQUARE CENTRAL FIELD

The setting: the three-dimensional space with an attracting point object (mass or charge)
placed at the origin of a coordinate system.

Equation of motion:

r′′(t) = − c

r3
r,

c > 0 is a constant, r is the position vector, r = ‖r‖.
The goal: To show that the trajectories are conic sections (ellipse, hyperbola, or parabola)

Step 1: trajectories are in the same plane.
We note that

d

dt
(r(t)× r′(t)) = r′(t)× r′(t) + r(t)× r′′(t) = 0− c

r3
r(t)× r(t) = 0.

Therefore

r(t)× r′(t) = r(0)× r′(0) = h,

a constant vector, determined by the initial conditions.
Thus r(t) is perpendicular to h for all t ≥ 0, meaning that the motion is in the plane that passes

through the origin and has h as the normal vector.

Step 2: an alternative representation of h. Denote by r̂(t) the vector r(t)/r(t), the unit
vector in the direction of r(t). Note that, in the central field, you are never hitting the origin, so
r̂(t) is always defined.

Then the claim is that

h = r2(t)r̂(t)× r̂′(t)

for all t ≥ 0.
Indeed,

r̂′(t) =
d

dt

(
r(t)

r(t)

)
=

r′(t)
r(t)

− r′(t) r(t)

r2(t)
,

and therefore

r̂(t)× r̂′(t) =
r̂(t)× r′(t)

r(t)
− r′(t) r̂(t)× r(t)

r2(t)
=

r̂(t)× r′(t)
r(t)

=
r(t)× r′(t)

r2(t)
=

h

r2(t)
.

Step 3: an expression for (r(t)× h)′.
First note that since h is a constant vector,

(r′(t)× h)′ = r′′(t)× h

Next, we use the equality

r′′(t) = − c

r2(t)
r̂(t),

from the equation of motion, as well as the equality

h = r2(t)r̂(t)× r̂′(t)
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from the previous step, and the equality

a× (b× c) = (a · c)b− (a · b)c

which is a general property of the cross product. Then

(r′(t)× h)′ = r′′(t)× h = − c

r2(t)
r̂(t)× (

r2(t)r̂(t)× r̂′(t)
)

= −cr̂(t)× (
r̂(t)× r̂′(t)

)
= −c(r̂(t) · r̂′(t))r̂(t) + c(r̂(t) · r̂(t))r̂′(t).

Finally, we use the remarkable fact that

0 =
d

dt
1 =

d

dt
‖r̂(t)‖2 =

d

dt
(r̂(t) · r̂(t)) = 2r̂(t) · r̂′(t)

that is
r̂(t) · r̂′(t) = 0.

As a result,
(r′(t)× h)′ = c(r̂(t) · r̂(t))r̂′(t) = c r̂′(t),

or
(r′(t)× h) = b + c r̂(t)

where b = (r′(0)× h)− r̂(0) is a constant vector determined by the initial conditions.

Step 4: selecting the vectors h and b: Note that b is in the plane spanned by r(0) and r′(0),
and is therefore perpendicular to h. Therefore we can choose our coordinate system so that b = b ı̂
and h = h κ̂. With this coordinate system, the motion will take place in the (x, y) plane.

Step 5: two ways to write r(t) · (r′(t)× h)
On the one hand, using the properties of the triple scalar product and the results of the first step,

r(t) · (r′(t)× h) = (r(t)× r′(t)) · h) = h× h = ‖h‖2 = h2.

On the other hand, from the previous step,

r(t) · (r′(t)× h) = r(t) · b + cr(t) · r̂(t) = br(t) cos θ(t) + cr(t) = r(t)(b cos θ + c),

where b = ‖b‖ and θ is the angle between r and b = ı̂ (the polar angle)

Step 6: we are done:

r(t) =
h2

c + b cos θ(t)

or, with A = h2/c, ε = b/c, and omitting the time,

r =
A

1 + ε cos θ

which is the equation of a conic section in the polar coordinates:

• circle if ε = 0
• ellipse if ε ∈ (0, 1)
• parabola if ε = 1
• hyperbola if ε > 1


