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 304 CLASSROOM NOTES [March

 2. Distribution of product. The probability element of the joint distribution
 of two independent variables, x and y, from the Cauchy distribution is

 (2) ~.2(1 + dxdy

 7 2(1 +X2)(1 + y2)

 In order to find the distribution of the product u=xy we substitute y=x-lu,
 dy = x-1du in (2), obtaining

 x I dxdu

 .2(1 + X2)(u2 + X2)

 which separates into partial fractions as follows:

 1 [ x I l XI
 r2(u2 _ + X2 2 + X2L+

 We now integrate with respect to x between the limits - oo and oo. (It is con-
 venient to integrate between 0 and oo and double the result.) For the distribu-
 tion of the product u, we find

 (3) f(U) = log U2
 72(2- 1)

 As a check we note [1, p. 192, formula (6)] that frJ(u)du=1.

 3. Distribution of quotient. The distribution of the quotient of two inde-
 pendent Cauchy variables can be found by the same process. It turns out to be
 identical with the distribution of the product, which of course must be the case,
 since, as already stated, the distribution of the reciprocal of a Cauchy variable is
 identical with the distribution of the variable itself.

 It may be noted that (3) is also the distribution of the product or quotient of
 the means (arithmetic or harmonic) of two independent samples from the dis-
 tribution (1).

 4. Nature of frequency curve. The function f(u) becomes infinite as u ap-
 proaches zero. Its value is indeterminate for u = + 1, but by l'H6pital's rule it
 can be shown that f(u) approaches 1/r2 as u approaches ? 1.

 To investigate the appearance of the frequency curve further we find the
 derivative

 2u -g2 - 1 -

 (4) f'(u) = r2(2 - 1)2 _ log u1.

 To show that this derivative is nonnegative we consider first the case u > 0.
 If we set ur-2= V the expression in brackets in (4) can be written 1 +log V- V.
 Considering the ratio (1 +log V)/ V, we find by usual methods that its maxi-
 mum value is 1, given by V- 1. Thus,
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 1965] CLASSROOM NOTES 305

 (I + log V)/V ; 1, or 1 + log V ; V.

 In terms of u2 we have 1 -log u2 < 1/U2, which shows that the bracketed expres*
 sion in (4) is (for u >0) always negative or zero. It can be zero for u = 1. But
 l'Hopital's rule shows that f'(u) approaches - 1/r2 as u approaches 1. Conse-

 quentlyf'(u) is always negative and, as u increases from 0 to oo, f(u) decreases
 from oo to 0.

 A similar argument shows that for u <0, f'(u) is always positive and, as u
 increases from - oo to 0, f(u) increases from 0 to oo.

 Combining results, we see that the frequency curve resembles the graph of

 y - /X2.
 All moments of the distribution are infinite.

 Thanks of the author are hereby expressed to Dr. Robert S. DeZur of the Martin Company,
 Denver Division, for valuable suggestions during the preparation of this note.

 Reference

 1. D. Bierens de Haan, Nouvelles Tables d'Integrales Definies, Stechert Hafner, New York,
 1929.

 ANOTHER PROOF OF THE INFINITE PRIMES THEOREM

 M. WUNDERLICH, University of Colorado

 (Now at the State University of New York at Buffalo)

 Let F. be the nth Fibonacci number. It is a well-known and easily proved
 result [1] that

 (1) F(m,n) = (Fm, Fn),

 where (m, n) as usual denotes the greatest common divisor. This property yields
 another proof of the infinite prime theorem.

 THEOREM. There are infinitely many primes.

 Proof. Suppose P1, P2, , pk are all the prime numbers. Then consider

 (2) Fpl, Fp2, * * *, Fpk,

 From (1), the numbers in (2) are pairwise relatively prime, and since there are
 only k primes, each of the numbers in (2) has only one prime factor. But this
 contradicts the fact that

 F1i = 4181 = 113.37.

 Reference

 1. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell, New York, 1961, p. 30.
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