International Journal of Pure and Applied Mathematics

Volume 56 No. 4 2009, 589-604

AN EFFICIENT REPRESENTATION FOR SOLVING
CATALAN NUMBER RELATED PROBLEMS

Matej Crepinsek! ¥, Luka Mernik?

IFaculty of Electrical Engineering and Computer Science
University of Maribor
Smetanova Ulica 17, Martbor. 2000, SLOVENIA
e-mail: matej.crepinsek @uni-mb.si
2Vestavia Hills High School
2235, Lime Rock Dr.. Vestavia Hills, AL 35216, USA
e-mail: Imernik@hotmail.com

Abstract: Nowadays, more and more computations. in artificial intelligence,
knowledge representation. and scientific computations to name a few, require
complex data processing and sophisticated algorithims, which are NP hard.
Solutions to such problems might range from succinet data representations to
parallelized and incremental algorithms. In this paper Catalan related problems
are discussed. For efficient computation of Catalan combinations a succinet
representation is used and several algorithins are developed. Results show that
the suggested approach can be successfully used for solving different Catalan
problems.

AMS Subject Classification: G68P05
Key Words: algorithins and data structures, Catalan mumnbers. emmuneration
of Catalan combinations. incremental algorithms

1. Introduction

What have the following problems in common:
How many balanced strings of n left and »n right brackets exist?

How many full binary trees with » internal nodes exist?

Received: September 28, 2000 (© 2009 Academic Publications

*Correspondence author

590 M. Crepinsek. L. Mernik

How many ways can a convex polyvgon with n 4 2 sides be divided into
e triangles?
How manv monotonic paths exist in n x n grid?

How many mountain ranges can vou draw with n upstrokes and n down-
strokes?

Well. the solution to all of these problems is described by Catalan numbers
[16]. Albeit, different problems that can be described by Catalan munbers
are well studied by mathematicians, in the report [16] more than 60 different
problems have been identified, there are still problems in practical use.

However, to know the munber of possible solutions is only a step towards
the final solution. In other words, only the size of the search space has been
identified. This search space then needs to be explored (exhaustively or heuris-
tically) by deterministic [8] or by stochastic algorithms [11] to find a particular
solution. For example, in grammatical inference [7] only a small fraction of all
possible derivation trees satisfy additional constraints (to parse positive sam-
ples and to reject negative samples) [6], [4]. Often search spaces are enormous,
for example when their sizes are given by the Catalan munbers. With the
nereasing processing power of modern computers and by parallel /distributed
computing many problems can be solved today which were impossible to solve
ten vears ago. However, to solve a problem with parallel/distributed com-
puting. algorithms need to be carefully developed to exploit different forms of
parallelisin. Solutions of problems related to Catalan munbers are usually re-
cursively defined. This prevents us from exploiting straightforward parallelisim.
In this paper all possible solutions {combinations) described by Catalan mum-
bers are succinetly represented as a vector of mumbers which can be computed
non-recursively. The main advantage of such representation is ease of use in
parallel /distributed processing and the ability that the same combination can
be differently interpreted depending on the underlying problem (e.g., full binary
trees, convex polyveon triangulation, monotonic paths, tiling a stair step). The
developed algorithims svstematically examine the whole search space, without
repetition of solutions, and are easy to implement and understand.

The organization of the paper is as follows. Introduction to Catalan mumn-
bers and a succinet representation of combinations are deseribed in Section 2.
Algorithms to generate the next combination from the current combination and
from its index are presented in Section 3. Various transformations from this
succinet representation of Catalan combinations into underlving problem rep-
resentations are shown in Section 4. The paper coneludes with Section 5. which
sumnarizes the contribution of the paper.

AN EFFICIENT REPRESENTATION FOR SOLVING. .. 591

2. Catalan Numbers and Enumeration of Combinations

The n-th Catalan munber (C,) can be calenlated by the equation (see [17]. [2]):
(2n)!

O, = m (1)

For a problem having €, solutions to an instance of size n. we will speak of
each solution as a “combination”. For problem where n = 2 we have 2 different
combinations. with n = 4 we already have 14 combinations, and with n = 12
we have 208012 different combinations. The mumber of different combinations
for the first 12 Catalan nuumbers is shown in Table 1. Table 1 also describes the

Catalan triangle [14], which can be used for ealeulating C,.

n | ', n |

| | IR

2 2 211 2 2

3 5 il 3 5 5

| K L4 9 14 i

5 42 Sl 514 2% 42 42

6 132 G611 620 4% 90 132 132

7 429 T 727 THO1GE 297 429 j2a

= 1430 S0 835110 275 572 1001 1430 1450

0 4=62 O 944 154 420 1001 2002 3432 A=62 jsez2
LO] 16756 O 10 54 208 637 1635 3640 7072 11934 16796 o700
11| 5=7=6 LLPL 1T 65 275 910 2545 61=x 13260 25104 41000 5x7=6 58786
12205012 1211 12 77 350 1260 3505 00096 23256 45450 004400 149226 208012 2080102

Table 1; Catalan munbers and Catalan triangle

The last munber in each row of Catalan triangle (Table 1) represents 7,
where n is the row munber. If we duplicate the last mumber (italic in Table 1),
we can say that each element in the triangle is equal to the one above plus the
one to the left [14].

Even for small n. the munber of all possible combinations becomes large
(Table 2). For example, the munber of all balanced strings of 4 left and right
brackets is 14, the mnunber of all possible triangulation of octagon is 132, and
the munber of all possible full binary trees with 9 leaves 1s 1430,

From equation (1) we can caleulate the munber of different combinations,
but equation (1} does not tell us how to systematically deseribe all combina-
tions. By studving different problems a suceinet representation of solutions that

o
1=
[

M. Crepinsek. L. Mernik

can be deseribed by Catalan niumbers has been identified. The combination
P, = [z, 20, 2y, ey 1

represents valid solution of O, if and only if:

1. %) oy < j: and

2.7y €47 and

Vi ki k> = x>,

Proof. Let P, = [.r'g. Loy Ly, .r'”_]] and Py = [.r'g. T2y oy Ty eeey Tp—1 s .r'”].
According to aforemention properties a, | < . If @, | =i then @, = i. Let
us construet the following table

1| arn | arq | a2

2 ”2.0 ”2.] UZ‘”Q'
3| azp | asy | azz

where a; ; denotes how many times the number j appears at position a; | in
Py Let a,, =0 if n > i (due to the property (1)), We know that a; 5 = 1 and
ay, = 0if n >0 (since P} = [0] is only possibility).

There are as many x, = (in P,y as there are v, | < ¢ in F,. That
pgnarantees that all possibilities for z,, = 1 are reached and the following equation
holds a, ; = Z-i_:o ;4. Since

J il
;5 = Z a1 = Z Wy g+ i1 = i1+ ai—1.
=0 f=0
and aj g = 1 the above table represents Catalan triangle (a; ; is the sum of
the one above and the one of the left) with the property a, ; = w for
(2i—2)!1

[/

0 < j =i Hence, a;;,-1 = 55— = C;—1. There are the same munber (a; ;1)

of ;| =i—11in P, as there are all combinations in I%,_,. Therefore there are
exactly ;| combinations in F,_| (or C; in F). O

A similar representation can be found in many combinatorial problems [13].
All valid combinations in lexicographic order for n = 4 and n = 5 are listed in
Table 2.

To be able to systematically search through combinations we emumerated
combinations by index i.

To achieve our goal stated in the introductory section we need to develop

AN EFFICIENT REPRESENTATION FOR SOLVING... 593

n =4 n=2>5
i | combination; i | combination; i | combination; i | combination;
1 [0.0.0.0] | [0, 0. 0,0, 0| 15 10,0, 1, 1, 1] 20 | 0. 1,1, 1, 1]
2 [BRSNINY 2|]0.0,0 0 1] 16 0,0, 1,1, 2] a0 | o, 1,1,1, 2]
3 [0, 2] 30 J00000000 2 17 [T T 31 0 T T
k! [0, 3] 4 [0, 0,0, 0, 3] 1% 0,0, 1,1, 4] 32| 10,1,1,1, 4]
5 [0.,0,1.1] 5 J0.0.0.00 4 19 | j0.0. 1,2, 2] 33| o, 1.1, 2, 2]
6 [0,0,1, 2] 6 [0.0,0.1, 1] 20 | 0,0, 1,2, 3 34 [0, 1,1, 2, 3]
7 [0.0,1.3] 700,001, 2| 21 [0, 0,1, 2, 4] 351 0, 1,1, 2, 4]
% [0,0,2,2] 5| 0.0, 0,1, 3] 22 [0, 0,1, 3, 3] a6 | [0, 1,1, 3, 3]
8] [0.0,2,3] 9 0.0, 0,1, 4] 23 | 0,001, 3, 4] ar | 0, 1,1, 3, 4]
10 [0.1.1.1] 10| o002, 2] 24 0,0, 2, 2, 2] 38 | o, 1.2, 2, 2]
11 [0,1,1,2] 11 [0, 0,0, 2, 3| 25| 10,0, 2,2, 3 39|]o, 1,2, 2, 3
12 [0,1.1,3] 12 | 0,0, 0, 2, 4] 26 0,0, 2, 2, 4] 40| [0, 1,2, 2, 4]
13 [0,1.2,2] 13 | J0.0,0. 3, 3 27 [0, 0, 2, 3, 3] 41 [0, 1, 2, 3. 3]
14 [0.1.2.3] 14 [0, 0,0, 3, 4] 28 0,0, 2, 3, 4] 42 | [0, 1, 2, 3, 4]

Table 2: Catalan combinations for n =4 and n =5

algoritlims which can generate a valid combination from the previous combina-
tion as well as from index . Both algorithins are presented in the next section.

3. Catalan Algorithms for the Succinct Representation

In this section two array based algorithins are presented. First, we present an
algorithm which is able to produce combination; from combination;—. The
second algorithm is able to produce combination; from 7.

3.1. Setting the Next Combination

Algorithm 1 caleulates the next combination from the previous one, except for
the last and the first combination. The first combination is filled with zeros and
labeled as combination|. The data structure used to represent a combination
is an array of length n. As input to the algorithim the combination P is given.
As a result the next valid combination is calenlated. The algorithim works
by trving to change the mput combination from the right to the left side and
satisfy combination representation rules. It starts by setting index to the last
position (line 3) and moving towards the zero position (line 16) in repeat loop.
If a value at a selected index can be increased (first rule; line 5), the value is

mereased and all elements to the right from the current index are set to this

594 M. Crepinsek. L. Mernik

value (second rule; lines 7-13). After the first successful change the algorithm

stops (line 14). In the case where we wish to change the last combination, the
algorithm returns false.

Algorithm 1 Algorithm for calculating next combination from combination P

| function setNextCombination (P)

2 begin

a2 index = length (P)—1;

4 repeat

5 if Plindex| < index

i begin

T inc (Plindex|);

& current = index+1;

9 while current < length (P)
10 begin

1 Pleurrent]| = Plindex |;
12 inci{current):

13 end ;

14 return true:

15 end:

16 dec(index):

17 until index==0:
18 return false:
19 end;

With n = 3 the sequence of combinations can be calculated:
[0.0,0] — [0,0,1] — [0.0,2] — [0, 1. 1] — [0, 1, 2]

3.2. Creating a Combination from its Index 1

In order to divide the search space into equal or nearly equal parts we need
to be able to ealeulate combination, directly from its index ¢ (unranking). For
n =3 we would like to caleulate the following combinations:

1—[0.0.0. 2—[0,0, 1.
300,02, 4—1Jo. 1L 1. 5—10.12]

AN EFFICIENT REPRESENTATION FOR SOLVING. ..

o
[l
o

o

(3]
[y T EN L S
o
=
e

14 28 42

Figure 1; Catalan trianele (CTh

Algorithm 2 Algorithin for calculating combination; from index

I function createCombination (CT, n. 1)
2 begin

i int Plnl:

4 decinj:

5 pos = O

@ selected = O

7 Plpos| = selected

8 ine(pos):

o while pos<=n

10 begin

L while CT[n—selected |[n—pos|=i
12 begin

13 i=i(T[n—selected |[n—pos|;
14 inc(selected)

15 end :

L6 Plpos| = selected:

17 inc(pos)

15 end:

s return P
a0 end ;

To achieve this the Catalan trianele (C7T) is used. The CT describes munber

of different combinations that can be generated by using same part of combina-
tion. For example. in Figure 1 munber 42 in the column 0 and row 0 describes
the fact that 42 combinations exists with schema 0*¥*** (* means element is not

defined by earrent colummn). If we move forward to the cohunn 1 {column index
in Figure 1), munber 28 in row 0 deseribes the fact that 28 combinations exist

with schema 00***, and munber 14 i row 1 {cohmnn 1) describes the fact that

14 combinations exist with schema 01*** Next 1 colmnn 2 schema for row

596G M. Crepinsek. L. Mernik

0 is 000**, in row 1 (column 2) schemas are 001** (moving left, left, up) and
011** (moving left, up, left) and in row 2 {columm 2} shemas are 002** and
012**. In colummn 3 schema for row 0 is 0000*, in row 1 (column 3) schemas
are 0001*, 0011* and 0111*, ete.

Algorithm 2 implements above logie. It generates the i-th combination from
the Catalan triangle (C7) of dimension n n.

The suggested algorithims are easy to implement. On the other hand, both
algorithims are very efficient since memory and time consumption are small.
Both algorithms, “setNextCombination” and “ereateCombination” have sim-
ilar time complexity. At first glance both algorithms have nested loops. so
complexity should be O(n?). but closer examination shows that the first algo-
rithm. because of the retirn statement in the nested loop has a maxitmum of
(i — 1) 4+ (n— 2} loop iterations; therefore complexity is O{n). Similarly, in the
second algorithin. where the nested loop is used for moving up in C7" and maxi-
mum munber of iterations is (n— 1)+ {n— 1), complexity is again O(n). An even
closer examination suggests that the first algorithm is faster than the second.
becanse minimum iterations in the loop is 1 (in case where the most right value
in combination is inereased by one), and minitmm of iterations in the second
aleorithm 1s n — 1. Average caleulated iterations for the first algorithm with
n € [3..15] was less than 1.8 iterations and for the second algorithm less than
14.6 iterations. Space complexity in both algorithms is the same (integer array
with length n). but the second algorithim has a disadvantage because in the
beginning we need additional space for C'T matrix (size n x n). We recommmend
to use the first algorithm for fast segment search and the second algorithm to
pick a random combination or to find a starting combination for the first one.

4. Transformation from a Combination to Underlying Problem
Presentation

Since we used a single representation of Catalan combinations the next step
is to show how to transform it to an underlyving problem presentation. Several
different problems: full binary trees, convex polygon triangulation, monotonic
paths, and tiling a stair step have been selected to show that this mapping is

problem specific.

AN EFFICIENT REPRESENTATION FOR SOLVING. ..

o
d=
=T

4.1. Full Binary Trees

Full binary trees. also called proper binary trees, are trees in which every node
has zero or two children [12]. They are used in grammmatical inference as deriva-
tion trees [4]. in Huffman coding for character’s frequency encoding [9], in a
binary decision diagram (BDD) as data structure for representing a truth table
[1]. The Catalan number), describes munber of different full binary trees
with n + 1 leaves. Transformation from a Catalan combination into a tree is
deseribed with Algorithm 3.

Algorithm 3 Creating a full binarv tree from Catalan combination P

| function decodeCombinationlnte Tree(P)

2 begin

3 VE = initVectarBElements(length (Py+1):
4 for (j = length(P)—1: j==0: j——)

5 begin

& pos = P[j]:

7 newll = join (VE|pos|. VE[pos+1]):
5 removelElement (VE. pos+1);

9 removelElement (VE, pos)

10 insertElement (VE. newl):

1l end:

12 return lastElement (VE):

13 end:

In Algorithm 3 the vector of nodes is represented as VE. In line 3 a vector
of leaves is generated. In the for loop we are decoding a combination from
right to left. Numbers in the combination describe positions in the vector VE.
The join operator creates a new node with left and right child. After the join
operation the children are replaced with the new node (lines 8-10).

An example of the decoding process for n = 4 and combination,; ([0, 1.1, 2])
is shown in Table 3. Everv row represents one step in the decoding process. In
the first and second column, the current position () in the combination and
the combination are described. In the next colhunn is the vector of nodes. In
the first step this vector is always filled with n + 1 leaves. The vector position
column (pos) is the earrent munber from the combination and deseribes the
elements to be joined. In the last two columns we can see the nodes to be
joined and how the generated subtree looks like.

598 M. Crepinsek. L. Mernik

j | Combinationy| Vector of pos Join New Node
elements-V E
3 [0,1,1,2] [co.e1.e2.03,e4] | 2 ey and es e
2 3
9 - 9 s - e
2 [0.1,1,2] [ng.m.c? & .eq] 1 e and $& { &3
€ ey e‘..
1 0,1,1,2] | e, / O .eq] | 1 [and ey
&) &) e A & & .'-‘z 5
0 [0,1,1,2] leo,] 0| eg and
B B €y &, E'.e’ee*cc'e.ée
G 1 H i 4

Table 3: Building full binary tree from combination

All combinations for n = 4 and their underlving presentation are shown in
Figure 2.

4.2. Convex Polygon Triangulation

Triangulation is one of the most common problems in computer graphics [15].
The problem of finding all possible ways to divide a polvgon with N sides
into triangles nsing non-intersecting diagonals is the oldest one which is related
with Catalan numbers [3]. Catalan number €', describes the number of different
wavs a convex polveon with n+ 2 sides can be cut into triangles by connecting
vertices with straight lines.

The decoding algorithim from a combination into a polyveon with triangn-
lation, is similar as we described for building full binary tree in Algorithim 3.
The vector of elements VE 1s now a vector of polveon sides. The join operator
makes a new diagonal between consecutive sides. The new diagonal replaces
the connecting sides. Because the last diagonal is already there, the for loop
can be shorter by one.

The decoding process for n = 4 and combination); is shown in Table 4.
where pos represents veetor index and p side position. In the beginning we have
a polveon without conmecting sides. A combination deseribes a side connecting
order. The triangulation process iterates from the outside of the polveon to the

AN EFFICIENT REPRESENTATION FOR SOLVING. .. 599

mside.
pos| Comby | Vector of Charrent P Join New polyzon
sides - VI polvzon sides

T, © SA—~

))[() l.]2] [l“u'_u.] .r*g.r*;;.r*_ll =N € 2 o 'rlI](l =5 € g
ee, eg
) C, [P

2 [(). 1.1. 2] [w.-_.. e (oo, eg). r”_]l A el 1 o and (2. e3) C4\3|
e‘ t.:II 61 e.||
e.:_-' 2 € E

0.1, 1. 2] Jen. (e1. (e, e3)). eq] '34\'3. 1 |(er. {2z, ea)) and ey e, e
Cs Cy €. €
€ 8 :

O[O, 1. 1. 2] Jeo. ((e1. (e2.es)))oea)]] & €| 0
e e,

Table 4: Triangulation process from combination

All combinations for n = 4 and their underlving presentation are shown in
Figure 2.

4.3. Monotonic Paths on an n 7 n Grid

In the field of path optimization different problems with monotonic paths exist,
see [10]. [18]. Monotonic paths have the properties that starting points are
in the lower left corner. ending points are in the upper right corner. and all
edges point rightwards or upwards. Catalan munber €, describes the munber
of different monotonic paths along the edges of a grid with n x n square cells,
which do not pass above the diagonal.

The decoding algorithm from a combination into a path is verv simple.
Every munber in a combination describes step right and its value the height of
a movement. The decoding process reads the combination from the left to the
right. The decoding process for n = 4 and combination | is shown in Table 4.3.
The first step in the decoding process is always to move right (first row in the
table). The second move can be move right or move up and right. Because we
have a 1 in the second place. we move up and right. In the third step we move
just right (because we are already at height 1) and in the last step we move up
and right (since we have to reach height 2. At the end of decoding we need

600 M. Crepinsek. L. Mernik

to move to the top of the grid by simple up moves (in our case two up moves)
(Table 4.3).

Vector | Combination,, | Current X ¥ Cirid with
index erid position | position | new path
t rf:
t | t
0 [0.1,1,2] A - 0 0 i
o] c
o 1l== o 1==
t rf:
™ | |
| 0.1,1,2] - I I i
) | e
o1z o1z
t rf:
™ |
5 0.1,1, 2] A 2 I i
o _ o1
o1 == O 1= =
[l | |
t fl
3 0.1,1,2] : ' 3 2 s
o als
o1 23 a1 23

Table 5: Creating monotonic path from combination

All combinations for n = 4 and their underlving presentation are shown in
Fioure 2.

4.4. Tile a Stair Step Shape

As the last example the problem of tiling a stair step shape of height n with
n rectangles is chosen [5]. The decoding algorithm from a combination into a
stair step shape 1s similar to the one for building full binary tree in Algorithim
3. In the decoding process we have two new operations. create new tile and
join tiles. The created new tile (nt) is always a rectangle. The rectangle size
will be defined by its width {w) and height (). The width is defined by size of
the left child (l¢) and the height by the size of the right child (re). Child size is
defined by the munber of already joint elements. The size of starting elements
in VEis 1. The second step is joining le, nt and re. First we join le and nf. in
such a way that we give nt at the top of le (left line aligment), next we join rc
at right position (top line aligment). Joining elements with size 1 is skipped.
The decoding process for n = 4 and combination) is shown in Table 4.4.
All eombinations for n = 4 and their underlving presentation are shown in

AN EFFICIENT REPRESENTATION FOR SOLVING... 601

Figure 2.

il combq | Vector of - Flements Sizel New Tile Join
elements \1 h
K [f). 1,1, 2] [“.'_.. 1. €9, 3, f'.]l 2 eq and e 11 €8, €&
2 e.e,
2[0.1. 1. 2] Jeo. e1.ee, . e4] | ey and ee, 1{2 e, e !
€
€€, €€, S
140.1.1, 2] [ea. e | ceq] |1 e, — and es |3|1 e, le,e,
e
. e,
(A € T
— I €&
0. 1. 1. 2] [en, e.e, | 10| enand .8, 14 e, e | &
t.:| e|

Table 6: Tile a stair step from combination

5. Conclusions

In this paper an efficient representation for computing Catalan combina-
tions is presented. Every possible solution is represented as an array of mun-
bers, with some given limitations. For searching through Catalan space. two
algorithms were suggested. The first algorithm (setNextCombination) allows
us to caleulate next possible solution from the current solution without rep-
etition of solutions. The second algorithm (createCombination) can create a
combination from an integer in such a way that two different integers can not
represent the same combination. Moreover, both algorithims are suitable for
parallel /distributed processing. Catalan munbers are solutions to many in-
teresting counting problems. such as the mumber of full binary trees. convex
polveon triangulation. monothonic paths. and tiling a stair step. In the paper
we show how our suceinet representation can be mapped to all of these dif-
ferent problems. The presented approach was successfully tmplemented in the
research area of grammatical inference. where we were able to achieve speedup
by more than 100 times (before we used recursive algorithms) [4].

602

M. Crepinsek, L. Mernik
i | Combination; Full binary Convex polvgon | Monotonic Tile
tree triangulation paths stair step
1| [0,0,0,0] A]
2 [0,0,0,11] iy ——
3 [0,0,0,2]
L
4 [0:0,0,3]
5| 10,0,1,11 R '
6 00127
) [
T [0,0,1,3] : o
8 [0,0,2,2] : [
[
9 [0,0,2,3] -
10 [0,1,1,1] -
11 0,1,1,2]

AN EFFICIENT REPRESENTATION FOR SOLVING... 603

1| Clombination; Full binary Convex polyvgon | Monotonic Tile
tree triangulation paths stair step

1

12 0,1,1,3]

LN

13 (015,57 ! ™ = A

,1,2,3] [6
J\'I(
_

Figure 2: Catalan combinations for n = 4 and their domain presentation

References

[1] H.R. Andersen. An introduction to binary decision diagrams, In: Leeture
Notes for the Course Advanced Algorithms (1997), 1-36.

| J.M. Borwein, D.H. Bailey, Mathematics by Experiment: Plausible Rea-
soning in the 21-st Century, A.K. Peters, Ltd., Wellesley (2004).

[3] E. Catalan, Note extraite d'une lettre adressde d 'édite, J. Reine Angew.
Mathematik, 27 (1844,

[4] M. Crepingek, M. Mernik. V. Zumer, Extracting grammar from programs:
brute force approach, In: Proe. SIGPLAN Notices, 40, No. 4 (2005), 29-38.

[5] R. Dickau, Stairstep Interpretation of Catalan Numbers, From the Wolfram
Demonstrations Project, http:/ /demonstrations.wolfram.com
/StairstepInterpretationOfCatalanNumbers.

[6] E.M. Gold. Language identification in the limit, In: Proc. Information and
Control, 10 (1967), 447-474.

[7] C. de la Higuera, Current trends in grammatical inference. Advances
in Pattern Recognition, In: Proc. Joint IAPR International Workshops
SSPR+SPR 2000, Springer LNCS, 1876 (2000}, 28-31.

604

8]

M. Crepinsek. L. Mernik

J. Hromkovie, WAL Oliva, Algorithmics for Hard Problems. Springer-
Verlag, New York, Ine. (20023,

D.A. Hufliman. A method for construction of minimum redundaney codes,
In: Proe. TRE, 4040 (1952}, 1098-1101.

Y. K. Hwang. N. Almja. Gross motion planning-a survey, In: ACM Comput.
Surv. 24, No. 3 (1992}, 219-291.

JR. Koza, Genetic Programmung: On the Programming of Computers by
Natural Selection, MIT Press (1992).

K. Mehlhorn, P. Sanders, Algorithms and Data Structures: The Basic Tool-
bor, Springer (2008).

A. Nijenlmis. H.S. Wilt, Combinatorial Algorithms for Computers and Cal-
culators, Academic Press (1978).

F. Ruskev, Algorithmic Solution of Two Combinatorial Problems Thesis,
Departinent of Applied Physics and Information Science. University of
Vietoria (1978).

B.E. Sagan. Proper partitions of a polvegon and A-Catalan mun-
bers, http://www.citebase.org/abstract?id=oai:ar Xiv.org:math /0407280
(2004).

R.P. Stanley, Catalan Addedum, http://www-math.mit.edu/rstan /ec/
catadd.pdf (2007).

R.P. Stanlev. S. Fomin. Enumerative Combinatorics. Vohune 2, Cambridge
University Press (2001).

K. Sugihara,. J. Smith. Genetic algorithms for adaptive motion planning
of an antonomous mobile robot, In: Tech. Rep.. Univ. of Hawaii at Manoa
(1997},

