
A Summary of Continuous Time Markov Chains

1. Intuition. For a regular continuous time Markov chain X with a countable state space SX = {x1, x2, . . .}, the
process sits in the state xk for random time Tk, then jumps to another state xl, sits there for random time Tl, then
jumps to another state, and so on. The times Ti spent in each state are independent and exponentially distributed.

2. As a motivation, consider a two-state discrete time Markov chain with possible jumps between the states at times
tk = k△t. To make the situation nontrivial, we need to assume the possibility of no jumps. More precisely, assume
that the probability to jump from state 1 to state 2 is q1△t and the probability to jump from state 2 to state 1 is
q2△t, where q1 and q2 are positive numbers and q1△t < 1, q2△t < 1. Then, at each time tk = k△t, the probability
to stay in state 1 is 1− q1△t and the probability to stay in state 2 is 1− q2△t. If X(0) = 1 and △t = T/n, then

P
(
X(t) = 1, t ≤ T

∣∣X(0) = 1) = P
(
X(tk) = 1, k = 1, . . . , n

∣∣X(0) = 1) =
(
1− (q1T/n)

)n → e−q1T , n → ∞.

Similarly, if X(0) = 2 and △t = T/n, then

P
(
X(t) = 2, t ≤ T

∣∣X(0) = 2) = P
(
X(tk) = 1, k = 1, . . . , n

∣∣X(0) = 2) =
(
1− (q2T/n)

)n → e−q2T , n → ∞.

3. As a further motivation, consider the discrete time Markov chain with more than two states. Again, assume the
possibility of not jumping. For the process at state i, the probability to jump to state j is qij△t. Then, with △t
sufficiently small, the probability of no jump is then 1− qi△t, where

qi =
∑
j:j ̸=i

qij

By the same argument, if △t = T/n and we let n → ∞, then the probability to stay in state i for time T is

P
(
X(tk) = i, k = 1, . . . , n|X(0) = i

)
= (1− (qiT/n))

n → e−qiT .

4. Recall that X = X(t), t ≥ 0, with values in a measurable space SX is called a continuous time Markov process
if, for every tn > tn−1 > tn−2 > · · · > t1 ≥ 0 and every measurable set B ⊆ SX ,

P
(
X(tn) ∈ B|Xtn−1

, Xtn−1
, . . . , Xt1

)
= P

(
X(tn) ∈ B|Xtn−1

)
Alternatively, we can say that, for every t > s ≥ 0,

P
(
X(t) ∈ B|X[0,s]

)
= P

(
X(t) ∈ B|Xs

)
, X[0,s] = σ

(
X(r), 0 ≤ r ≤ t

)
.

In what follows, we assume that

1. SX = {x1, x2, . . .} (countable state space);

2. The trajectories of X are right-continuous;

3. The process is time-homogeneous, that is, for all xi, xj ∈ SX and all t, s ≥ 0,

P
(
X(t+ s) = xj |X(s) = xi

)
= P

(
X(t) = xj |X(0) = xi

)
;

4. The functions pij(t) = P
(
X(t) = xj |X(0) = xi

)
are continuous at zero, that is,

lim
t→0+

pij(t) =

{
1, if i = j,

0, if i ̸= j.

By the Chapman-Kolmogorov equation,

pij(t+ s) =
∑
k

pik(t)pkj(s) =
∑
k

pik(s)pkj(t).
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Theorem 1.1.1. Under the above assumptions 1–4,

1. for every i ̸= j, the limit qij = limt→0+
pij(t)

t exists and is finite;

2. for every i, the limit qi = limt→0+
1−pii(t)

t exists, but can be +∞;

3.
∑

j:j ̸=i qij ≤ qi.

Definition 1.1.2.

(a) The process X is called regular if, for every i, qi is finite and∑
j:j ̸=i

qij = qi

(b) The state xi of the process X is called instantaneous if qi = +∞.

Intuitively, xi is instantaneous if
P
(
X(t) = xi|X(0) = xi

)
= 0

for every t > 0.

Corollary 1.1.3. If X is regular, then

pij(t) = δij + qijt+ o(t), t → 0+,

where qii = −qi.

For a regular Markov process X, define the matrices P = P (t) with components pij(t) (row i, column j) and Q with
components qij (row i, column j).

Theorem 1.1.4. If X is regular, then Ṗ (t) = QP (t) = P (t)Q and Q is the generator of X. In particular,
P (t) = etQ.

Embedded Markov chain

If X is regular and we define the sequence of random variables yn and random times Tn by

T0 = 0, y0 = X(0), Tn+1 = inf{t > Tn : X(t) ̸= yn}, yn+1 = X(Tn+1),

then yn, n ≥ 1, is a Markov sequence with transition probabilities

P(yn+1 = xj |yn = xi) =
qij
qi

and
P(Tn+1 − Tn > t|yn = xi) = e−qit.
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