## A Summary of Continuous Time Markov Chains

1. Intuition. For a regular continuous time Markov chain $X$ with a countable state space $S_{X}=\left\{x_{1}, x_{2}, \ldots\right\}$, the process sits in the state $x_{k}$ for random time $T_{k}$, then jumps to another state $x_{l}$, sits there for random time $T_{l}$, then jumps to another state, and so on. The times $T_{i}$ spent in each state are independent and exponentially distributed.
2. As a motivation, consider a two-state discrete time Markov chain with possible jumps between the states at times $t_{k}=k \triangle t$. To make the situation nontrivial, we need to assume the possibility of no jumps. More precisely, assume that the probability to jump from state 1 to state 2 is $q_{1} \Delta t$ and the probability to jump from state 2 to state 1 is $q_{2} \Delta t$, where $q_{1}$ and $q_{2}$ are positive numbers and $q_{1} \Delta t<1, q_{2} \Delta t<1$. Then, at each time $t_{k}=k \Delta t$, the probability to stay in state 1 is $1-q_{1} \Delta t$ and the probability to stay in state 2 is $1-q_{2} \Delta t$. If $X(0)=1$ and $\Delta t=T / n$, then

$$
\mathbb{P}(X(t)=1, t \leq T \mid X(0)=1)=\mathbb{P}\left(X\left(t_{k}\right)=1, k=1, \ldots, n \mid X(0)=1\right)=\left(1-\left(q_{1} T / n\right)\right)^{n} \rightarrow e^{-q_{1} T}, n \rightarrow \infty
$$

Similarly, if $X(0)=2$ and $\Delta t=T / n$, then

$$
\mathbb{P}(X(t)=2, t \leq T \mid X(0)=2)=\mathbb{P}\left(X\left(t_{k}\right)=1, k=1, \ldots, n \mid X(0)=2\right)=\left(1-\left(q_{2} T / n\right)\right)^{n} \rightarrow e^{-q_{2} T}, n \rightarrow \infty
$$

3. As a further motivation, consider the discrete time Markov chain with more than two states. Again, assume the possibility of not jumping. For the process at state $i$, the probability to jump to state $j$ is $q_{i j} \triangle t$. Then, with $\triangle t$ sufficiently small, the probability of no jump is then $1-q_{i} \triangle t$, where

$$
q_{i}=\sum_{j: j \neq i} q_{i j}
$$

By the same argument, if $\Delta t=T / n$ and we let $n \rightarrow \infty$, then the probability to stay in state $i$ for time $T$ is

$$
\mathbb{P}\left(X\left(t_{k}\right)=i, k=1, \ldots, n \mid X(0)=i\right)=\left(1-\left(q_{i} T / n\right)\right)^{n} \rightarrow e^{-q_{i} T}
$$

4. Recall that $X=X(t), t \geq 0$, with values in a measurable space $S_{X}$ is called a continuous time Markov process if, for every $t_{n}>t_{n-1}>t_{n-2}>\cdots>t_{1} \geq 0$ and every measurable set $B \subseteq S_{X}$,

$$
\mathbb{P}\left(X\left(t_{n}\right) \in B \mid X_{t_{n-1}}, X_{t_{n-1}}, \ldots, X_{t_{1}}\right)=\mathbb{P}\left(X\left(t_{n}\right) \in B \mid X_{t_{n-1}}\right)
$$

Alternatively, we can say that, for every $t>s \geq 0$,

$$
\mathbb{P}\left(X(t) \in B \mid X_{[0, s]}\right)=\mathbb{P}\left(X(t) \in B \mid X_{s}\right), \quad X_{[0, s]}=\sigma(X(r), 0 \leq r \leq t)
$$

In what follows, we assume that

1. $S_{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ (countable state space);
2. The trajectories of $X$ are right-continuous;
3. The process is time-homogeneous, that is, for all $x_{i}, x_{j} \in S_{X}$ and all $t, s \geq 0$,

$$
\mathbb{P}\left(X(t+s)=x_{j} \mid X(s)=x_{i}\right)=\mathbb{P}\left(X(t)=x_{j} \mid X(0)=x_{i}\right)
$$

4. The functions $p_{i j}(t)=\mathbb{P}\left(X(t)=x_{j} \mid X(0)=x_{i}\right)$ are continuous at zero, that is,

$$
\lim _{t \rightarrow 0^{+}} p_{i j}(t)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

By the Chapman-Kolmogorov equation,

$$
p_{i j}(t+s)=\sum_{k} p_{i k}(t) p_{k j}(s)=\sum_{k} p_{i k}(s) p_{k j}(t)
$$

Theorem 1.1.1. Under the above assumptions 1-4,

1. for every $i \neq j$, the limit $q_{i j}=\lim _{t \rightarrow 0^{+}} \frac{p_{i j}(t)}{t}$ exists and is finite;
2. for every $i$, the limit $q_{i}=\lim _{t \rightarrow 0^{+}} \frac{1-p_{i i}(t)}{t}$ exists, but can be $+\infty$;
3. $\sum_{j: j \neq i} q_{i j} \leq q_{i}$.

## Definition 1.1.2.

(a) The process $X$ is called regular if, for every $i, q_{i}$ is finite and

$$
\sum_{j: j \neq i} q_{i j}=q_{i}
$$

(b) The state $x_{i}$ of the process $X$ is called instantaneous if $q_{i}=+\infty$.

Intuitively, $x_{i}$ is instantaneous if

$$
\mathbb{P}\left(X(t)=x_{i} \mid X(0)=x_{i}\right)=0
$$

for every $t>0$.
Corollary 1.1.3. If $X$ is regular, then

$$
p_{i j}(t)=\delta_{i j}+q_{i j} t+o(t), t \rightarrow 0+
$$

where $q_{i i}=-q_{i}$.
For a regular Markov process $X$, define the matrices $\boldsymbol{P}=\boldsymbol{P}(t)$ with components $p_{i j}(t)$ (row $i$, column $j$ ) and $\boldsymbol{Q}$ with components $q_{i j}$ (row $i$, column $j$ ).

Theorem 1.1.4. If $X$ is regular, then $\dot{\boldsymbol{P}}(t)=\boldsymbol{Q} \boldsymbol{P}(t)=\boldsymbol{P}(t) \boldsymbol{Q}$ and $\boldsymbol{Q}$ is the generator of $X$. In particular, $\boldsymbol{P}(t)=e^{t \boldsymbol{Q}}$.

## Embedded Markov chain

If $X$ is regular and we define the sequence of random variables $y_{n}$ and random times $T_{n}$ by

$$
T_{0}=0, y_{0}=X(0), T_{n+1}=\inf \left\{t>T_{n}: X(t) \neq y_{n}\right\}, y_{n+1}=X\left(T_{n+1}\right)
$$

then $y_{n}, n \geq 1$, is a Markov sequence with transition probabilities

$$
\mathbb{P}\left(y_{n+1}=x_{j} \mid y_{n}=x_{i}\right)=\frac{q_{i j}}{q_{i}}
$$

and

$$
\mathbb{P}\left(T_{n+1}-T_{n}>t \mid y_{n}=x_{i}\right)=e^{-q_{i} t}
$$

