A Summary of Continuous Time Markov Chains

1. Intuition. For a regular continuous time Markov chain X with a countable state space $S_X = \{x_1, x_2, \ldots\}$, the process sits in the state x_k for random time T_k , then jumps to another state x_l , sits there for random time T_l , then jumps to another state, and so on. The times T_i spent in each state are independent and exponentially distributed.

2. As a motivation, consider a two-state discrete time Markov chain with possible jumps between the states at times $t_k = k \Delta t$. To make the situation nontrivial, we need to assume the possibility of no jumps. More precisely, assume that the probability to jump from state 1 to state 2 is $q_1 \Delta t$ and the probability to jump from state 2 to state 1 is $q_2 \Delta t$, where q_1 and q_2 are positive numbers and $q_1 \Delta t < 1$, $q_2 \Delta t < 1$. Then, at each time $t_k = k \Delta t$, the probability to stay in state 1 is $1 - q_1 \Delta t$ and the probability to stay in state 2 is $1 - q_2 \Delta t$. If X(0) = 1 and $\Delta t = T/n$, then

$$\mathbb{P}(X(t) = 1, t \le T | X(0) = 1) = \mathbb{P}(X(t_k) = 1, k = 1, \dots, n | X(0) = 1) = (1 - (q_1 T/n))^n \to e^{-q_1 T}, n \to \infty.$$

Similarly, if X(0) = 2 and $\Delta t = T/n$, then

$$\mathbb{P}(X(t) = 2, t \le T | X(0) = 2) = \mathbb{P}(X(t_k) = 1, k = 1, \dots, n | X(0) = 2) = (1 - (q_2 T/n))^n \to e^{-q_2 T}, n \to \infty.$$

3. As a further motivation, consider the discrete time Markov chain with more than two states. Again, assume the possibility of not jumping. For the process at state *i*, the probability to jump to state *j* is $q_{ij} \Delta t$. Then, with Δt sufficiently small, the probability of no jump is then $1 - q_i \Delta t$, where

$$q_i = \sum_{j: j \neq i} q_{ij}$$

By the same argument, if $\Delta t = T/n$ and we let $n \to \infty$, then the probability to stay in state i for time T is

$$\mathbb{P}(X(t_k) = i, \ k = 1, \dots, n | X(0) = i) = (1 - (q_i T/n))^n \to e^{-q_i T}$$

4. Recall that X = X(t), $t \ge 0$, with values in a measurable space S_X is called a continuous time Markov process if, for every $t_n > t_{n-1} > t_{n-2} > \cdots > t_1 \ge 0$ and every measurable set $B \subseteq S_X$,

$$\mathbb{P}(X(t_n) \in B | X_{t_{n-1}}, X_{t_{n-1}}, \dots, X_{t_1}) = \mathbb{P}(X(t_n) \in B | X_{t_{n-1}})$$

Alternatively, we can say that, for every $t > s \ge 0$,

$$\mathbb{P}(X(t) \in B|X_{[0,s]}) = \mathbb{P}(X(t) \in B|X_s), \quad X_{[0,s]} = \sigma(X(r), \ 0 \le r \le t).$$

In what follows, we assume that

- 1. $S_X = \{x_1, x_2, \ldots\}$ (countable state space);
- 2. The trajectories of X are right-continuous;
- 3. The process is *time-homogeneous*, that is, for all $x_i, x_j \in S_X$ and all $t, s \ge 0$,

$$\mathbb{P}\big(X(t+s) = x_j | X(s) = x_i\big) = \mathbb{P}\big(X(t) = x_j | X(0) = x_i\big);$$

4. The functions $p_{ij}(t) = \mathbb{P}(X(t) = x_i | X(0) = x_i)$ are continuous at zero, that is,

$$\lim_{t \to 0^+} p_{ij}(t) = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

By the Chapman-Kolmogorov equation,

$$p_{ij}(t+s) = \sum_{k} p_{ik}(t)p_{kj}(s) = \sum_{k} p_{ik}(s)p_{kj}(t).$$

THEOREM 1.1.1. Under the above assumptions 1–4,

- 1. for every $i \neq j$, the limit $q_{ij} = \lim_{t \to 0^+} \frac{p_{ij}(t)}{t}$ exists and is finite;
- 2. for every *i*, the limit $q_i = \lim_{t \to 0^+} \frac{1 p_{ii}(t)}{t}$ exists, but can be $+\infty$;
- 3. $\sum_{j:j\neq i} q_{ij} \leq q_i$.

Definition 1.1.2.

(a) The process X is called **regular** if, for every i, q_i is finite and

$$\sum_{j:j\neq i} q_{ij} = q_i$$

(b) The state x_i of the process X is called instantaneous if $q_i = +\infty$.

Intuitively, x_i is instantaneous if

$$\mathbb{P}(X(t) = x_i | X(0) = x_i) = 0$$

for every t > 0.

COROLLARY 1.1.3. If X is regular, then

$$p_{ij}(t) = \delta_{ij} + q_{ij}t + o(t), \ t \to 0+,$$

where $q_{ii} = -q_i$.

For a regular Markov process X, define the matrices $\mathbf{P} = \mathbf{P}(t)$ with components $p_{ij}(t)$ (row *i*, column *j*) and \mathbf{Q} with components q_{ij} (row *i*, column *j*).

THEOREM 1.1.4. If X is regular, then $\dot{\mathbf{P}}(t) = \mathbf{Q}\mathbf{P}(t) = \mathbf{P}(t)\mathbf{Q}$ and \mathbf{Q} is the generator of X. In particular, $\mathbf{P}(t) = e^{t\mathbf{Q}}$.

Embedded Markov chain

If X is regular and we define the sequence of random variables y_n and random times T_n by

$$T_0 = 0, y_0 = X(0), T_{n+1} = \inf\{t > T_n : X(t) \neq y_n\}, y_{n+1} = X(T_{n+1}), y_n \in X(t)$$

then $y_n, n \ge 1$, is a Markov sequence with transition probabilities

$$\mathbb{P}(y_{n+1} = x_j | y_n = x_i) = \frac{q_{ij}}{q_i}$$

and

$$\mathbb{P}(T_{n+1} - T_n > t | y_n = x_i) = e^{-q_i t}.$$