About the Buffon needle

The problem A needle of length L is tossed in a random way on the floor with infinitely many parallel lines d units apart, $d>L$. What is the probability p that the needle crosses a line?

The origin Georges-Louis Leclerc, compte de Buffon (1707-1788), French naturalist and intellectual; 1733: statement; 1777: solution.

The answer

$$
p=\frac{2 L}{\pi d} .
$$

Informal argument By common sense, $p=c L / d$: the longer the needle and closer the lines, the more likely the needle to cross a line. All we need is the number c.

Note that, in the case of a needle, p is also the average number of intersections. An extra stretch of imagination suggests that the average number of intersections should not depend on the shape of the needle but only on its length, that is, should be the same for a needle or a noodle, as long as both have the same length L, that is, the average number of intersections should be $c L / d$ for either a needle or a noodle.

Now take a noodle in the form of the circle of diameter d so that $L=\pi d$. Then the number of intersections is always 2 , that is, $2=c(\pi d) / d$, that is, $c=2 / \pi$.

Rigorous derivation Introduce the distance X from the mid-point of the needle to the nearest line and the angle θ between the needle and a line. The needle intersects a line if

$$
X \leq \frac{L}{2} \sin \theta
$$

A random toss means that X is uniform on $(-d / 2, d / 2), \theta$ is uniform on $(0, \pi)$, and X and θ are independent. The answer follows after a simple integration.

Statistical computation of π From

$$
p=\frac{2 L}{\pi d},
$$

we conclude that

$$
\pi \approx \frac{2 L}{d} \times \frac{\text { total number of tosses }}{\text { number of times the needle crossed a line }}
$$

Recall

$$
\pi=3.141592654 \ldots
$$

A physical experiment Rudolf Wolf (1816-1893), Swiss; conducted the experiment between 1849 and 1953 with $d=45 \mathrm{~mm}, L=36 \mathrm{~mm}$. He made 5000 tosses, got 2532 intersections, resulting in

$$
\pi \approx \frac{360,000}{2532 \cdot 45} \approx 3.159558
$$

Very reasonable...

A "mathematical" experiment Mario Lazzarini, Italian; conducted the experiment in 1901 with $d=30 \mathrm{~mm}, L=25 \mathrm{~mm}$. He made 3408 tosses, got 1808 intersections, resulting in

$$
\pi \approx \frac{3408 \cdot 5}{1808 \cdot 3} \approx 3.14159292
$$

Amazing...

Making sense of Lazzarini's experiment

Fact 1: $3408=213 \cdot 16=71 \cdot 3 \cdot 16,1808=113 \cdot 16$, that is,

$$
\frac{3408 \cdot 5}{1808 \cdot 3}=\frac{71 \cdot 3 \cdot 16 \cdot 5}{113 \cdot 16 \cdot 3}=\frac{355}{113}
$$

Fact 2:

$$
\pi \approx \frac{355}{113} \approx 3.14159292
$$

is a famous rational approximation of π : the best there is if you limit the number of digits on top and bottom to three (even to four or five...).

So Lazzarini knew what he wanted ($113 n / 213$ crossings in n tosses) and ran a "sequential" experiment until he got it (this is the most probable explanation; we will never know for sure).

Note also that, to claim accuracy to 6th decimal in the outcome, one would need to claim similar accuracy in the measurements of d and L, which is not easily achievable, especially in 1901.

Further reading

- Lee Badger. Lazzarini's Lucky Approximation of π. Mathematics Magazine, Vol. 67 (1994), No. 2, pp. 83-91.
- Ivars Peterson. Buffon's Needling Ants,
http://www.sciencenews.org/view/generic/id/459/description/Buffons_Needling_Ants

