PDEs in a bounded domain. ${ }^{1}$

Heat equation on an interval.

$$
\begin{equation*}
u_{t}=a u_{x x}, u=u(t, x), \quad t>0, x \in(0, L) \tag{1}
\end{equation*}
$$

$u(0, x)=\varphi(x), u(t, 0)=u(t, L)=0$. Try

$$
\begin{equation*}
u(t, x)=\sum_{k=1}^{\infty} F_{k}(t) G_{k}(x): \tag{2}
\end{equation*}
$$

separation of variables. Then

$$
\begin{equation*}
u(0, x)=\sum_{k} F_{k}(0) G_{k}(x), u(t, 0)=\sum_{k} F_{k}(t) G_{k}(0), u(t, L)=\sum_{k} F_{k}(t) G_{k}(L), \tag{3}
\end{equation*}
$$

so that, in particular, we expect

$$
G_{k}(0)=G_{k}(L)=0
$$

for all k. Also, by linearity, each function $u_{k}(t, x)=G_{k}(t) F_{k}(x)$ must satisfy the heat equation, that is,

$$
\begin{equation*}
F_{k}^{\prime}(t) G_{k}(x)=a F_{k}(t) G_{k}^{\prime \prime}(x), \frac{F_{k}^{\prime}(t)}{a F_{k}(t)}=\frac{G_{k}^{\prime \prime}(x)}{G_{k}(x)}=b_{k} \tag{4}
\end{equation*}
$$

for some numbers b_{k}. In particular, we need (not identically zero) functions $G_{k}=G_{k}(x)$ satisfying

$$
G_{k}^{\prime \prime}(x)=b_{k} G_{k}(x), G_{k}(0)=G_{k}(L)=0
$$

If $c_{k}>0$, then

$$
G_{k}(x)=A_{k} \cosh \left(\sqrt{c_{k}} x\right)+B_{k} \sinh \left(\sqrt{c_{k}} x\right)
$$

so that $G_{k}(0)=A_{k}=0$ and, because $\sinh (t) \neq 0$ for (real) $t \neq 0$, the condition $G_{k}(L)=0$ implies $B_{k}=0$ as well. In other words, if $b_{k}>0$, then G_{k} must be identically zero: not what we want.

If $b_{k}=0$, then

$$
G_{k}(x)=A_{k}+B_{k} x .
$$

and again $G_{k}(0)=0$ implies $A_{k}=0$, and then $G_{k}(L)=0$ implies $B_{k}=0$. In other words, $b_{k}=0$ does not work either.

Finally, assume that $b_{k}=-\lambda_{k}^{2}<0$. Then

$$
G_{k}^{\prime \prime}(x)+\lambda_{k}^{2} G_{k}(x)=0
$$

so that

$$
G_{k}(x)=A_{k} \cos \left(\lambda_{k} x\right)+B_{k} \sin \left(\lambda_{k} x\right)
$$

From $G_{k}(0)=0$ we get $A_{k}=0$; from $G_{k}(L)=0$ and $B_{k} \neq 0$, we get

$$
\sin \left(\lambda_{k} L\right)=0
$$

that is

$$
\begin{equation*}
\lambda_{k}=\frac{\pi}{L} k, k \in \mathbb{N}, c_{k}=-\lambda_{k}^{2} . \tag{5}
\end{equation*}
$$

We now put together everything we got so far and re-write (2) as

$$
\begin{equation*}
u(t, x)=\sum_{k=1}^{\infty} F_{k}(t) \sin (\pi k x / L) \tag{6}
\end{equation*}
$$

Also, by (4) and (5),

$$
F_{k}^{\prime}(t)=-\left(\frac{\pi k}{L}\right)^{2} F_{k}(t)
$$

Then

$$
\begin{equation*}
F_{k}(t)=F_{k}(0) e^{-(\pi k / L)^{2} t} \tag{7}
\end{equation*}
$$

that is, (6) becomes

$$
\begin{equation*}
u(t, x)=\sum_{k=1}^{\infty} F_{k}(0) e^{-(\pi k / L)^{2} t} \sin (\pi k x / L) . \tag{8}
\end{equation*}
$$

[^0]Finally, putting $t=0$ in (8),

$$
u(0, x)=\varphi(x)=\sum_{k=1}^{\infty} F_{k}(0) \sin (\pi k x / L)
$$

so that [after multiplying both sides by a particular $\sin (\pi k x / L)$ and integrating from 0 to L]

$$
\begin{equation*}
F_{k}(0)=\frac{2}{L} \int_{0}^{L} \varphi(x) \sin (\pi k x / L) d x \tag{9}
\end{equation*}
$$

In other words, the "solution" of (1) is given by (8) and (9), as long as the we can expand the initial condition φ in a Fourier sine series. If φ is continuous on $[0, L]$ and $\varphi(0)=\varphi(L)=0$, then the "solution" is a classical solution: you can substitute it into the equation to get an identity, and the initial condition is satisfied in the sense that $u(0+, x)=\varphi(x)$.

Wave equation on an interval.

$$
\begin{equation*}
u_{t t}=c^{2} u_{x x}, u=u(t, x), \quad t>0, x \in(0, L) \tag{10}
\end{equation*}
$$

$u(0, x)=\varphi(x), \quad u_{t}(0, x)=\psi(x), \quad u(t, 0)=u(t, L)=0$. The solution procedure is identical to the one used to solve the heat equation. Write

$$
\begin{equation*}
u(t, x)=\sum_{k=1}^{\infty} F_{k}(t) G_{k}(x) \tag{11}
\end{equation*}
$$

conclude that

$$
\frac{F_{k}^{\prime \prime}(t)}{c^{2} F_{k}(t)}=\frac{G_{k}^{\prime \prime}(x)}{G_{k}(x)}=b_{k}
$$

and then

$$
b_{k}=-\left(\frac{\pi k}{L}\right)^{2}, G_{k}(x)=\sin (\pi k x / L)
$$

so that, from

$$
F_{k}^{\prime \prime}(t)+c^{2}(\pi k / L)^{2} F_{k}(t)=0
$$

we get

$$
F_{k}(t)=A_{k} \cos (c \pi k t / L)+B_{k} \sin (c \pi k t / L)
$$

that is,

$$
\begin{equation*}
u(t, x)=\sum_{k=1}^{\infty}\left(A_{k} \cos (c \pi k t / L)+B_{k} \sin (c \pi k t / L)\right) \sin (\pi k x / L) \tag{12}
\end{equation*}
$$

Put $t=0$ to get

$$
\varphi(x)=\sum_{k=1}^{+\infty} A_{k} \sin (\pi k x / L)
$$

that is,

$$
\begin{equation*}
A_{k}=\frac{2}{L} \int_{0}^{L} \varphi(x) \sin (\pi k x / L) d x \tag{13}
\end{equation*}
$$

Similarly,

$$
\psi(x)=\frac{c \pi}{L} \sum_{k=1}^{+\infty} k B_{k} \sin (\pi k x / L)
$$

that is,

$$
\begin{equation*}
B_{k}=\frac{2}{c \pi k} \int_{0}^{L} \psi(x) \sin (\pi k x / L) d x . \tag{14}
\end{equation*}
$$

The final answer is given by the combination of (12), (13), and (14). It is clearly a "solution". When is it a classical solution?

A note about [musical] string. All string instruments are (approximately) described by (10). The difference is in

- length of the string L;
- linear mass density of the string ρ [measured in mass per unit length];
- tension of the string τ [measured in the units of force].

The quantities ρ and τ combine nicely to provide the propagation speed:

$$
c=\sqrt{\frac{\tau}{\rho}}
$$

The sound we hear comes (mostly) from the base frequency, corresponding to $k=1$:

$$
\omega_{1}=\frac{c \pi}{L}
$$

The frequencies $\omega_{k}=k \omega_{1}$ represent overtones; very roughly speaking, controlling those overtones is a major part of both the quality of the instrument and the quality of the musician playing the instrument.

Looking at the formula

$$
\omega_{1}=\frac{\pi}{L} \sqrt{\frac{\tau}{\rho}}
$$

we can now understand the basic math behind the string section of an orchestra: the frequency gets lower as the string gets longer and heavier [violin-viola-cello-bass]; fine-tuning the string is achieved by changing the tension τ.

A note about battle ropes. The starting point could be the equation

$$
\begin{equation*}
u_{t t}=c^{2} u_{x x}, u=u(t, x), t>0, x \in(0, L), \tag{15}
\end{equation*}
$$

with boundary conditions $u(t, 0)=f(t), u(t, L)=0$. The most basic question to address is existence of standing wave solutions, that is, solutions of the form

$$
u_{s v}(t, x)=F(t) H(x),
$$

where the functions F and H are periodic. A natural way to satisfy boundary conditions is to consider a function

$$
\begin{equation*}
u_{n}(t, x)=f(t) \cos \left(\frac{\pi}{L}\left(\frac{1}{2}+n\right) x\right), \quad n=0,1,2, \ldots, \tag{16}
\end{equation*}
$$

which could be a standing wave solution. The main point here is that

$$
\cos (0)=1, \quad \cos \left(\frac{\pi}{L}\left(\frac{1}{2}+n\right) L\right)=0
$$

so the function u_{n} satisfies the boundary conditions. Plugging u_{n} into (15) equation, we conclude that u_{n} is indeed a standing wave solution if

$$
f^{\prime \prime}(t)=-c^{2}\left(\frac{\pi}{L}\left(\frac{1}{2}+n\right)\right)^{2} f(t)
$$

that is, if

$$
f(t)=A_{n} \cos \omega_{n} t+B_{n} \sin \omega_{n} t, \quad \omega_{n}=\frac{c \pi}{L}\left(\frac{1}{2}+n\right) .
$$

How realistic is this result? I would argue: not much, for (at least) two reasons:
(1) Typically, the system starts from rest, that is, $f(t)=f^{\prime}(t)=0$, which is not possible with the above setting;
(2) Real-life system has damping; for battle ropes you probably call it "resistance".

As a result, a more realistic model of battle ropes could be a damped wave equation

$$
\begin{equation*}
u_{t t}+\gamma u_{t}=c^{2} u_{x x} \tag{17}
\end{equation*}
$$

with zero initial conditions $u(0, x)=u_{t}(0, x)=0$ and boundary conditions $u(t, 0)=f(t), u(t, L)=0$ so that a compatibility condition holds: $f(0)=f^{\prime}(0)=0$. The extra term γu_{t}, with $\gamma>0$, represents damping [or resistance]. How can we solve this equation?

Again, we start with the function u_{n} from (16) and define

$$
\begin{equation*}
v(t, x)=u(t, x)-u_{n}(t, x) \tag{18}
\end{equation*}
$$

If the function u is a solution of (17), then the function v must be a solution of the inhomogeneous wave equation

$$
\begin{equation*}
v_{t t}+\gamma v_{t}=v_{x x}+B(t, x) \tag{19}
\end{equation*}
$$

with zero initial and boundary conditions. The function B is

$$
B(t, x)=c^{2}\left(u_{n}\right)_{x x}(t, x)-\gamma\left(u_{n}\right)_{t}(t, x)-\left(u_{n}\right)_{t t}(t, x)
$$

The solution of (19) can then be written using the variation of parameters formula. [We will discuss the general version of the formula later; writing out the corresponding solution for (19) and analyzing it is up to you].

Laplace equation in a rectangle: an example

$$
u_{x x}+u_{y y}=0, \quad 0<x<1, \quad 0<y<\pi, \quad u=u(x, y)
$$

$u(1, y)=1, u(0, y)=u(x, 0)=u(x, \pi)=0$. Write

$$
u(x, y)=\sum_{k=1}^{\infty} F_{k}(x) G_{k}(y)
$$

with $G_{k}(0)=G_{k}(\pi)=F_{k}(0)=0$. Then

$$
-\frac{F_{k}^{\prime \prime}(x)}{F_{k}(x)}=\frac{G_{k}^{\prime \prime}(y)}{G_{k}(y)}=b_{k}=-\lambda_{k}^{2}:
$$

we need non-zero solutions of

$$
G_{k}^{\prime \prime}(y)-b_{k} G_{k}(y)=0, \quad G_{k}(0)=G_{k}(\pi)=0,
$$

which, as we know, is only possible for $b_{k}=-\lambda_{k}^{2}$. In fact, we also know that

$$
\lambda_{k}=k, \quad G_{k}(y)=\sin (k y)
$$

After that,

$$
F_{k}^{\prime \prime}(x)-k^{2} F_{k}(x)=0, \quad F_{k}(x)=A_{k} \sinh (k x)+B_{k} \cosh (k x) .
$$

Because $F_{k}(0)=0$, we have $B_{k}=0, F_{k}(x)=A_{k} \sinh (k x)$, and

$$
u(x, y)=\sum_{k} A_{k} \sinh (k x) \sin (k y)
$$

From

$$
u(1, y)=1=\sum_{k} A_{k} \sinh (k) \sin (k y)
$$

we conclude [after multiplying by a particular $\sin (k y)$ and integrating from 0 to π]

$$
A_{2 k}=0, A_{2 k+1}=\frac{4}{\pi(2 k+1) \sinh (2 k+1)}
$$

As a result,

$$
u(x, y)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sinh ((2 k+1) x) \sin ((2 k+1) y)}{(2 k+1) \sinh (2 k+1)}
$$

Can you see that, for $(x, y) \in(0,1) \times(0, \pi)$, the function u is infinitely differentiable?
Poisson equation in a square: an example

$$
u_{x x}+u_{y y}=-1, \quad u=u(x, y), \quad(x, y) \in G,\left.\quad u\right|_{\partial G}=0
$$

where G is a square:

$$
G=(0, \pi) \times(0, \pi) .
$$

Now we have to consider the eigenvalue problem for the Laplacian in G [also known as the Helmholtz equation],

$$
U_{x x}+U_{y y}=-\lambda_{k, \ell}^{2} U,\left.U\right|_{\partial G}=0
$$

look for the solution in the form $U(x, u)=F_{k}(x) G_{\ell}(y)$ so that

$$
\frac{F_{k}^{\prime \prime}(x)}{F_{k}(x)}+\frac{G_{\ell}^{\prime \prime}(y)}{G_{\ell}(y)}=-\lambda_{k, \ell}^{2},
$$

then conclude from the boundary conditions that

$$
F_{k}(x)=\sin (k x), G_{\ell}(y)=\sin (\ell y), \lambda_{k, \ell}=k^{2}+\ell^{2}, \quad k, \ell \in \mathbb{N} .
$$

After that, the solution will be of the form

$$
u(x, y)=\sum_{k, \ell} A_{k, \ell} \sin (k x) \sin (\ell y)
$$

which, after substitution into the original equation gives

$$
\begin{equation*}
\sum_{k, \ell} A_{k, \ell}\left(k^{2}+\ell^{2}\right) \sin (k x) \sin (\ell y)=1 \tag{20}
\end{equation*}
$$

As we already know, for $x \in(0, \pi)$ and $y \in(0, \pi)$,

$$
\frac{4}{\pi} \sum_{k} \frac{\sin ((2 k+1) x)}{2 k+1}=1=\frac{4}{\pi} \sum_{\ell} \frac{\sin ((2 \ell+1) y)}{2 \ell+1}
$$

and therefore

$$
\begin{equation*}
1=1 \times 1=\frac{16}{\pi^{2}} \sum_{k, \ell} \frac{\sin ((2 k+1) x)}{2 k+1} \frac{\sin ((2 \ell+1) y)}{2 \ell+1} . \tag{21}
\end{equation*}
$$

Comparing (20) and (21), we conclude that

$$
u(x, y)=\frac{16}{\pi^{2}} \sum_{k, \ell} \frac{\sin ((2 k+1) x) \sin ((2 \ell+1) y)}{(2 k+1)(2 \ell+1)\left((2 k+1)^{2}+(2 \ell+1)^{2}\right)} .
$$

Can you see from this formula that $u(x, y)>0$ for all $(x, y) \in G$? Can you see from this formula that u is infinitely differentiable in G ?

The big (and general) picture: orthogonal expansion in eigenfunctions of self-adjoint operators
As a motivation, let us take another look at the computations for the heat equation on the interval, specifically, those leading to the functions G_{k} and numbers λ_{k}.

Denote by \mathbb{X} the collection of twice-continuously differentiable functions $f=f(x)$ on $[0, L]$ such that $f(0)=$ $f(L)=0$. For $f \in \mathbb{X}$, define the operator \mathcal{A} by

$$
\mathcal{A}[f](x)=-f^{\prime \prime}(x) .
$$

Also, for $f, g \in \mathbb{X}$, define the inner product

$$
(f, g)=\int_{0}^{L} f(x) \overline{g(x)} d x ; \quad\|f\|^{2}=(f, f) ;
$$

we allow the possibility that the functions f, g can take complex values. Note that

$$
\begin{equation*}
(g, f)=\overline{(f, g)} \tag{22}
\end{equation*}
$$

Then the operator \mathcal{A} is
(1) non-negative definite: for $f \in \mathbb{X}$, we integrate by parts

$$
(\mathcal{A}[f], f)=-\int_{0}^{L} f^{\prime \prime}(x) \overline{f(x)} d x=-\int_{0}^{L} f \overline{(x)} d f^{\prime}(x)-\left.f^{\prime}(x) \overline{f(x)}\right|_{x=0} ^{x=L}+\int_{0}^{L} f^{\prime}(x) \overline{f^{\prime}(x)} d x=\left\|f^{\prime}\right\|^{2} \geq 0
$$

remember that $f(0)=f(L)=0$.
(2) symmetric: for $f, g \in \mathbb{X}$, we integrate by parts twice

$$
\begin{aligned}
(\mathcal{A}[f], g) & =-\int_{0}^{L} f^{\prime \prime}(x) g \overline{(x)} d x=-\int_{0}^{L} \overline{g(x)} d f^{\prime}(x)-\left.f^{\prime}(x) \overline{g(x)}\right|_{x=0} ^{x=L}+\int_{0}^{L} f^{\prime}(x) \overline{g^{\prime}(x)} d x \\
& =\left.f(x) \overline{g^{\prime}(x)}\right|_{x=0} ^{x=L}-\int_{0}^{L} f(x) \overline{g^{\prime \prime}(x)} d x=(f, \mathcal{A}[g])
\end{aligned}
$$

once again, we use that $f(0)=f(L)=g(0)=g(L)=0$.
Next, we say that $G \in \mathbb{X}$ is an eigenfunction of \mathcal{A} if $\|G\|>0$ and there exists a number $\mu \in \mathbb{C}$ such that

$$
\mathcal{A}[G](x)=\mu G(x), x \in(0, L) .
$$

The following result could be familiar from linear algebra: a symmetric matrix has real eigenvalues, and the eigenvectors corresponding to different eigenvalues are orthogonal; the eigenvalues of a symmetric non-negative definite matrix are non-negative. Turns out, this is not just about matrices.

Proposition If \mathcal{A} is symmetric, that is,

$$
\begin{equation*}
(\mathcal{A}[f], g)=(f, \mathcal{A}[g]), \tag{23}
\end{equation*}
$$

then $\mu \in \mathbb{R}$ and, if $\mathcal{A}\left[G_{1}\right]=\mu_{1} G_{1}, \mathcal{A}\left[G_{2}\right]=\mu_{2} G_{2}$ with $\mu_{1} \neq \mu_{2}$, then

$$
\left(G_{1}, G_{2}\right)=0 .
$$

If, in addition \mathcal{A} is non-negative definite, that is

$$
\begin{equation*}
(\mathcal{A}[f], f) \geq 0, f \in \mathbb{X} \tag{24}
\end{equation*}
$$

then $\mu \geq 0$.

Proof. Taking $f=g=G$ in (23) and using (22),

$$
\mu\|G\|^{2}=(\mathcal{A}[G], G)=(G, \mathcal{A}[G])=(G, \mu G)=\bar{\mu}\|G\|^{2}
$$

Because $\|G\|>0$ by the definition of the eigenfunction, we get $\mu=\bar{\mu}$, that is, $\mu \in \mathbb{R}$.
Next, take $f=G_{1}, g=G_{2}$ in (23). Then

$$
\mu_{1}\left(G_{1}, G_{2}\right)=\mu_{2}\left(G_{1}, G_{2}\right)
$$

Because $\mu_{1} \neq \mu_{2}$, we conclude that $\left(G_{1}, G_{2}\right)=0$.
Finally, take $f=G$ in (24). Then $\mu\|G\|^{2} \geq 0$, that is, $\mu \geq 0$.
Under some additional technical assumptions, which hold in all examples we will ever encounter, the collection of the eigenfunctions G_{k} is complete, in the sense that all "reasonable" functions $f=f(x)$ can be written as

$$
\begin{equation*}
f(x)=\sum_{k} f_{k} G_{k}(x) \tag{25}
\end{equation*}
$$

for some numbers $f_{k} \in \mathbb{C}$. The following table summarizes how all the expansions we know [Fourier sine, Fourier cosine, and usual Fourier] are particular cases of (25). In fact, the only thing that changes is the boundary conditions.

Operator	Eigenfunctions G_{k}	Expansion

$\mathcal{A}[f](x)=-f^{\prime \prime}(x), f(0)=f(L)=0$	$\sin (\pi k x / L), k \in \mathbb{N}$	Fourier sine
$\mathcal{A}[f](x)=-f^{\prime \prime}(x), f^{\prime}(0)=f^{\prime}(L)=0$	$\cos (\pi k x / L), k \in \mathbb{Z}_{+}$	Fourier cosine
$\mathcal{A}[f](x)=-f^{\prime \prime}(x), f(0)=f(L), f^{\prime}(0)=f^{\prime}(L)$	$\exp (\mathfrak{i} \pi k x / L), k \in \mathbb{Z}$	Fourier

One other example that is doable in closed form is

$$
\mathcal{A}[f](x)=-f^{\prime \prime}(x), f(0)=0, f^{\prime}(L)=0 .
$$

Indeed, direct computations show that \mathcal{A} is symmetric and positive definite. Then a quick repetition of the computations from the analysis of the heat equation leads to the relations

$$
G_{k}^{\prime \prime}(x)+\lambda^{2} G_{k}(x)=0, G_{k}(0)=G_{k}^{\prime}(L)=0
$$

which imply

$$
G_{k}(x)=\sin \left(\lambda_{k} x\right)
$$

and $\cos \left(\lambda_{k} L\right)=0$, that is

$$
\begin{equation*}
\lambda_{k}=\frac{\pi}{2 L}+\frac{\pi}{L} k, k \in \mathbb{Z}_{+} . \tag{26}
\end{equation*}
$$

As a quick concept check, verify that the eigenfunctions of

$$
\mathcal{A}[f](x)=-f^{\prime \prime}(x), f^{\prime}(0)=f(L)=0
$$

[now the derivative is zero at the left point] are

$$
G_{k}(x)=\cos \left(\lambda_{k} x\right)
$$

with the same λ_{k} as in (26). Note that neither of the resulting expansions (25) are truly Fourier, but might still be useful, for example, to understand the Brownian motion [a random process] or the clarinet [a musical instrument].

[^0]: ${ }^{1}$ Sergey Lototsky, USC

