
PDEs in a bounded domain.1

Heat equation on an interval.

(1) ut = auxx, u = u(t, x), t > 0, x ∈ (0, L)

u(0, x) = φ(x), u(t, 0) = u(t, L) = 0. Try

(2) u(t, x) =

∞∑
k=1

Fk(t)Gk(x) :

separation of variables. Then

(3) u(0, x) =
∑
k

Fk(0)Gk(x), u(t, 0) =
∑
k

Fk(t)Gk(0), u(t, L) =
∑
k

Fk(t)Gk(L),

so that, in particular, we expect

Gk(0) = Gk(L) = 0

for all k. Also, by linearity, each function uk(t, x) = Gk(t)Fk(x) must satisfy the heat equation, that is,

(4) F ′
k(t)Gk(x) = aFk(t)G

′′
k(x),

F ′
k(t)

aFk(t)
=
G′′

k(x)

Gk(x)
= bk

for some numbers bk. In particular, we need (not identically zero) functions Gk = Gk(x) satisfying

G′′
k(x) = bkGk(x), Gk(0) = Gk(L) = 0.

If ck > 0, then

Gk(x) = Ak cosh(
√
ck x) +Bk sinh(

√
ck x),

so that Gk(0) = Ak = 0 and, because sinh(t) ̸= 0 for (real) t ̸= 0, the condition Gk(L) = 0 implies Bk = 0 as well.
In other words, if bk > 0, then Gk must be identically zero: not what we want.

If bk = 0, then

Gk(x) = Ak +Bkx.

and again Gk(0) = 0 implies Ak = 0, and then Gk(L) = 0 implies Bk = 0. In other words, bk = 0 does not work
either.

Finally, assume that bk = −λ2k < 0. Then

G′′
k(x) + λ2kGk(x) = 0

so that

Gk(x) = Ak cos(λkx) +Bk sin(λkx).

From Gk(0) = 0 we get Ak = 0; from Gk(L) = 0 and Bk ̸= 0, we get

sin(λkL) = 0,

that is

(5) λk =
π

L
k, k ∈ N, ck = −λ2k.

We now put together everything we got so far and re-write (2) as

(6) u(t, x) =

∞∑
k=1

Fk(t) sin(πkx/L)

Also, by (4) and (5),

F ′
k(t) = −

(
πk

L

)2

Fk(t).

Then

(7) Fk(t) = Fk(0)e
−(πk/L)2t,

that is, (6) becomes

(8) u(t, x) =

∞∑
k=1

Fk(0)e
−(πk/L)2t sin(πkx/L).
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Finally, putting t = 0 in (8),

u(0, x) = φ(x) =

∞∑
k=1

Fk(0) sin(πkx/L)

so that [after multiplying both sides by a particular sin(πkx/L) and integrating from 0 to L]

(9) Fk(0) =
2

L

∫ L

0

φ(x) sin(πkx/L) dx.

In other words, the “solution” of (1) is given by (8) and (9), as long as the we can expand the initial condition φ
in a Fourier sine series. If φ is continuous on [0, L] and φ(0) = φ(L) = 0, then the “solution” is a classical solution:
you can substitute it into the equation to get an identity, and the initial condition is satisfied in the sense that
u(0+, x) = φ(x).

Wave equation on an interval.

(10) utt = c2uxx, u = u(t, x), t > 0, x ∈ (0, L)

u(0, x) = φ(x), ut(0, x) = ψ(x), u(t, 0) = u(t, L) = 0. The solution procedure is identical to the one used to solve
the heat equation. Write

(11) u(t, x) =

∞∑
k=1

Fk(t)Gk(x),

conclude that
F ′′
k (t)

c2Fk(t)
=
G′′

k(x)

Gk(x)
= bk

and then

bk = −
(
πk

L

)2

, Gk(x) = sin(πkx/L),

so that, from
F ′′
k (t) + c2(πk/L)2Fk(t) = 0,

we get
Fk(t) = Ak cos(cπkt/L) +Bk sin(cπkt/L),

that is,

(12) u(t, x) =

∞∑
k=1

(
Ak cos(cπkt/L) +Bk sin(cπkt/L)

)
sin(πkx/L).

Put t = 0 to get

φ(x) =

+∞∑
k=1

Ak sin(πkx/L),

that is,

(13) Ak =
2

L

∫ L

0

φ(x) sin(πkx/L) dx.

Similarly,

ψ(x) =
cπ

L

+∞∑
k=1

kBk sin(πkx/L),

that is,

(14) Bk =
2

cπk

∫ L

0

ψ(x) sin(πkx/L) dx.

The final answer is given by the combination of (12), (13), and (14). It is clearly a “solution”. When is it a classical
solution?

A note about [musical] string. All string instruments are (approximately) described by (10). The difference
is in

• length of the string L;
• linear mass density of the string ρ [measured in mass per unit length];
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• tension of the string τ [measured in the units of force].

The quantities ρ and τ combine nicely to provide the propagation speed:

c =

√
τ

ρ
.

The sound we hear comes (mostly) from the base frequency, corresponding to k = 1:

ω1 =
cπ

L
;

The frequencies ωk = kω1 represent overtones; very roughly speaking, controlling those overtones is a major part of
both the quality of the instrument and the quality of the musician playing the instrument.

Looking at the formula

ω1 =
π

L

√
τ

ρ
,

we can now understand the basic math behind the string section of an orchestra: the frequency gets lower as the
string gets longer and heavier [violin-viola-cello-bass]; fine-tuning the string is achieved by changing the tension τ .

A note about battle ropes. The starting point could be the equation

(15) utt = c2uxx, u = u(t, x), t > 0, x ∈ (0, L),

with boundary conditions u(t, 0) = f(t), u(t, L) = 0. The most basic question to address is existence of standing
wave solutions, that is, solutions of the form

usv(t, x) = F (t)H(x),

where the functions F and H are periodic. A natural way to satisfy boundary conditions is to consider a function

(16) un(t, x) = f(t) cos

(
π

L

(
1

2
+ n

)
x

)
, n = 0, 1, 2, . . . ,

which could be a standing wave solution. The main point here is that

cos(0) = 1, cos

(
π

L

(
1

2
+ n

)
L

)
= 0

so the function un satisfies the boundary conditions. Plugging un into (15) equation, we conclude that un is indeed
a standing wave solution if

f ′′(t) = −c2
(
π

L

(
1

2
+ n

))2

f(t)

that is, if

f(t) = An cosωnt+Bn sinωnt, ωn =
cπ

L

(
1

2
+ n

)
.

How realistic is this result? I would argue: not much, for (at least) two reasons:

(1) Typically, the system starts from rest, that is, f(t) = f ′(t) = 0, which is not possible with the above setting;
(2) Real-life system has damping; for battle ropes you probably call it “resistance”.

As a result, a more realistic model of battle ropes could be a damped wave equation

(17) utt + γut = c2uxx

with zero initial conditions u(0, x) = ut(0, x) = 0 and boundary conditions u(t, 0) = f(t), u(t, L) = 0 so that a
compatibility condition holds: f(0) = f ′(0) = 0. The extra term γut, with γ > 0, represents damping [or
resistance]. How can we solve this equation?

Again, we start with the function un from (16) and define

(18) v(t, x) = u(t, x)− un(t, x).

If the function u is a solution of (17), then the function v must be a solution of the inhomogeneous wave equation

(19) vtt + γvt = vxx +B(t, x)

with zero initial and boundary conditions. The function B is

B(t, x) = c2(un)xx(t, x)− γ(un)t(t, x)− (un)tt(t, x).

The solution of (19) can then be written using the variation of parameters formula. [We will discuss the general
version of the formula later; writing out the corresponding solution for (19) and analyzing it is up to you].



4

Laplace equation in a rectangle: an example

uxx + uyy = 0, 0 < x < 1, 0 < y < π, u = u(x, y),

u(1, y) = 1, u(0, y) = u(x, 0) = u(x, π) = 0. Write

u(x, y) =
∞∑
k=1

Fk(x)Gk(y)

with Gk(0) = Gk(π) = Fk(0) = 0. Then

−F
′′
k (x)

Fk(x)
=
G′′

k(y)

Gk(y)
= bk = −λ2k :

we need non-zero solutions of

G′′
k(y)− bkGk(y) = 0, Gk(0) = Gk(π) = 0,

which, as we know, is only possible for bk = −λ2k. In fact, we also know that

λk = k, Gk(y) = sin(ky).

After that,

F ′′
k (x)− k2Fk(x) = 0, Fk(x) = Ak sinh(kx) +Bk cosh(kx).

Because Fk(0) = 0, we have Bk = 0, Fk(x) = Ak sinh(kx), and

u(x, y) =
∑
k

Ak sinh(kx) sin(ky).

From

u(1, y) = 1 =
∑
k

Ak sinh(k) sin(ky)

we conclude [after multiplying by a particular sin(ky) and integrating from 0 to π]

A2k = 0, A2k+1 =
4

π(2k + 1) sinh(2k + 1)
.

As a result,

u(x, y) =
4

π

∞∑
k=1

sinh((2k + 1)x) sin((2k + 1)y)

(2k + 1) sinh(2k + 1)
.

Can you see that, for (x, y) ∈ (0, 1)× (0, π), the function u is infinitely differentiable?

Poisson equation in a square: an example

uxx + uyy = −1, u = u(x, y), (x, y) ∈ G, u|∂G = 0,

where G is a square:

G = (0, π)× (0, π).

Now we have to consider the eigenvalue problem for the Laplacian in G [also known as the Helmholtz equation],

Uxx + Uyy = −λ2k,ℓU, U |∂G = 0,

look for the solution in the form U(x, u) = Fk(x)Gℓ(y) so that

F ′′
k (x)

Fk(x)
+
G′′

ℓ (y)

Gℓ(y)
= −λ2k,ℓ,

then conclude from the boundary conditions that

Fk(x) = sin(kx), Gℓ(y) = sin(ℓy), λk,ℓ = k2 + ℓ2, k, ℓ ∈ N.

After that, the solution will be of the form

u(x, y) =
∑
k,ℓ

Ak,ℓ sin(kx) sin(ℓy),

which, after substitution into the original equation gives

(20)
∑
k,ℓ

Ak,ℓ(k
2 + ℓ2) sin(kx) sin(ℓy) = 1.
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As we already know, for x ∈ (0, π) and y ∈ (0, π),

4

π

∑
k

sin((2k + 1)x)

2k + 1
= 1 =

4

π

∑
ℓ

sin((2ℓ+ 1)y)

2ℓ+ 1

and therefore

(21) 1 = 1× 1 =
16

π2

∑
k,ℓ

sin((2k + 1)x)

2k + 1

sin((2ℓ+ 1)y)

2ℓ+ 1
.

Comparing (20) and (21), we conclude that

u(x, y) =
16

π2

∑
k,ℓ

sin((2k + 1)x) sin((2ℓ+ 1)y)

(2k + 1)(2ℓ+ 1)((2k + 1)2 + (2ℓ+ 1)2)
.

Can you see from this formula that u(x, y) > 0 for all (x, y) ∈ G? Can you see from this formula that u is infinitely
differentiable in G?

The big (and general) picture: orthogonal expansion in eigenfunctions of self-adjoint operators
As a motivation, let us take another look at the computations for the heat equation on the interval, specifically,

those leading to the functions Gk and numbers λk.
Denote by X the collection of twice-continuously differentiable functions f = f(x) on [0, L] such that f(0) =

f(L) = 0. For f ∈ X, define the operator A by

A[f ](x) = −f ′′(x).
Also, for f, g ∈ X, define the inner product

(f, g) =

∫ L

0

f(x)g(x) dx; ∥f∥2 = (f, f);

we allow the possibility that the functions f, g can take complex values. Note that

(22) (g, f) = (f, g)

Then the operator A is

(1) non-negative definite: for f ∈ X, we integrate by parts

(A[f ], f) = −
∫ L

0

f ′′(x)f(x) dx = −
∫ L

0

¯f(x) df ′(x)− f ′(x)f(x)
∣∣∣x=L

x=0
+

∫ L

0

f ′(x)f ′(x) dx = ∥f ′∥2 ≥ 0;

remember that f(0) = f(L) = 0.
(2) symmetric: for f, g ∈ X, we integrate by parts twice

(A[f ], g) = −
∫ L

0

f ′′(x) ¯g(x) dx = −
∫ L

0

g(x) df ′(x)− f ′(x)g(x)
∣∣∣x=L

x=0
+

∫ L

0

f ′(x)g′(x) dx

= f(x)g′(x)
∣∣∣x=L

x=0
−
∫ L

0

f(x)g′′(x) dx = (f,A[g]);

once again, we use that f(0) = f(L) = g(0) = g(L) = 0.

Next, we say that G ∈ X is an eigenfunction of A if ∥G∥ > 0 and there exists a number µ ∈ C such that

A[G](x) = µG(x), x ∈ (0, L).

The following result could be familiar from linear algebra: a symmetric matrix has real eigenvalues, and the eigen-
vectors corresponding to different eigenvalues are orthogonal; the eigenvalues of a symmetric non-negative definite
matrix are non-negative. Turns out, this is not just about matrices.

Proposition If A is symmetric, that is,

(23) (A[f ], g) = (f,A[g]),

then µ ∈ R and, if A[G1] = µ1G1, A[G2] = µ2G2 with µ1 ̸= µ2, then

(G1, G2) = 0.

If, in addition A is non-negative definite, that is

(24) (A[f ], f) ≥ 0, f ∈ X,
then µ ≥ 0.
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Proof. Taking f = g = G in (23) and using (22),

µ∥G∥2 = (A[G], G) = (G,A[G]) = (G,µG) = µ∥G∥2.
Because ∥G∥ > 0 by the definition of the eigenfunction, we get µ = µ, that is, µ ∈ R.

Next, take f = G1, g = G2 in (23). Then

µ1(G1, G2) = µ2(G1, G2).

Because µ1 ̸= µ2, we conclude that (G1, G2) = 0.
Finally, take f = G in (24). Then µ∥G∥2 ≥ 0, that is, µ ≥ 0. �

Under some additional technical assumptions, which hold in all examples we will ever encounter, the collection of
the eigenfunctions Gk is complete, in the sense that all “reasonable” functions f = f(x) can be written as

(25) f(x) =
∑
k

fkGk(x)

for some numbers fk ∈ C. The following table summarizes how all the expansions we know [Fourier sine, Fourier
cosine, and usual Fourier] are particular cases of (25). In fact, the only thing that changes is the boundary conditions.

Operator Eigenfunctions Gk Expansion

A[f ](x) = −f ′′(x), f(0) = f(L) = 0 sin(πkx/L), k ∈ N Fourier sine
A[f ](x) = −f ′′(x), f ′(0) = f ′(L) = 0 cos(πkx/L), k ∈ Z+ Fourier cosine
A[f ](x) = −f ′′(x), f(0) = f(L), f ′(0) = f ′(L) exp(iπkx/L), k ∈ Z Fourier

One other example that is doable in closed form is

A[f ](x) = −f ′′(x), f(0) = 0, f ′(L) = 0.

Indeed, direct computations show that A is symmetric and positive definite. Then a quick repetition of the compu-
tations from the analysis of the heat equation leads to the relations

G′′
k(x) + λ2Gk(x) = 0, Gk(0) = G′

k(L) = 0,

which imply
Gk(x) = sin(λkx),

and cos(λkL) = 0, that is

(26) λk =
π

2L
+
π

L
k, k ∈ Z+.

As a quick concept check, verify that the eigenfunctions of

A[f ](x) = −f ′′(x), f ′(0) = f(L) = 0

[now the derivative is zero at the left point] are

Gk(x) = cos(λkx)

with the same λk as in (26). Note that neither of the resulting expansions (25) are truly Fourier, but might still be
useful, for example, to understand the Brownian motion [a random process] or the clarinet [a musical instrument].


