PDEs in a bounded domain.*
Heat equation on an interval.
(1) Up = QUgy, v =u(t,z), >0, z € (0,L)
u(0,2) = ¢(x), u(t,0) =u(t, L) = 0. Try

(2) u(t,z) =Y Fr(t)Gi(x) :
k=1
separation of variables. Then
(3) ZFk u(t,0) = ZFk(t)Gk(O)v u(t, L) = ZFk(t)Gk(L)v
k k

so that, in particular, we expect
Gr(0) =Gr(L)=0
for all k. Also, by linearity, each function ug(t,z) = Gy (t)Fy(x) must satisfy the heat equation, that is,
F (@) _ Gi(z)
4 F/(H)Gy(x) = aF, ()G, b = R =
( ) k( ) k(l’) a k( ) k(x)7 aFk;<t) Gk;(.’I})
for some numbers by. In particular, we need (not identically zero) functions Gy, = Gi(x) satisfying

Gg(x) = kak(Z‘), Gk(O) = Gk(L) =0.

If ¢, > 0, then
Gy (z) = Ay cosh(y/ci x) + By sinh(y/ci x),
so that Gx(0) = A, = 0 and, because sinh(t) # 0 for (real) ¢ # 0, the condition G (L) = 0 implies By = 0 as well.
In other words, if by > 0, then G, must be identically zero: not what we want.
If by, = 0, then
Gk(l‘) = A, + Bx.

and again G(0) = 0 implies Ay = 0, and then Gy (L) = 0 implies By = 0. In other words, by = 0 does not work
either.
Finally, assume that by = —A? < 0. Then

GlU(x) + NeGr(z) =0
so that
Gi(x) = Ay cos(A\gx) + By sin(Agx).
From G(0) =0 we get Ay = 0; from G(L) =0 and By # 0, we get
sin(AyL) =0,
that is
(5) Ak:%k, kEN, cp = —\2.

We now put together everything we got so far and re-write (2) as
(6) ZFk sin(rkxz/L)

Also, by (4) and (5),

F(t) = — <T)2Fk(t).

Then
(7) Fi(t) = Fi(0)e ™MD,
that is, (6) becomes

(8) Z Fu(0)e™ ™R/ D sin (nka / L).
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Finally, putting ¢ = 0 in (8),

u(0, z) ZFk sin(wkxz/L)
so that [after multiplying both sides by a particular 51n(7rkx/ L) and integrating from 0 to L]
2 L
9) F(0) = Z/ o(x)sin(rkx/L) dx
0

In other words, the “solution” of (1) is given by (8) and (9), as long as the we can expand the initial condition ¢
in a Fourier sine series. If ¢ is continuous on [0, L] and ¢(0) = ¢(L) = 0, then the “solution” is a classical solution:
you can substitute it into the equation to get an identity, and the initial condition is satisfied in the sense that
u(04,z) = ¢(x).

Wave equation on an interval.

(10) Ugt = s, u=u(t,x), t>0, x€(0,L)

u(0,2) = p(x), w(0,2) =1v(x), wu(t,0)=mwu(t,L)=0.The solution procedure is identical to the one used to solve
the heat equation. Write

(11) u(t,z) = Fi(t)Gr(z)
k=1
conclude that

) _ Gi(x)

EE(0) - Cul)

and then
AN .
b = — T ) Gr(z) = sin(rka /L),

so that, from
F//(t) + *(mk/L)*Fy(t) = 0,

we get
Fy(t) = Ay cos(emkt/L) + By sin(cerkt/L),
that is,
(12) Z (A, cos(emkt/L) + By sin(cmkt/L)) sin(wkx/L).
k=1
Put ¢t =0 to get
—+o0
= Aysin(rkz/L),
k=1
that is,
2 L
(13) Ay = Z/ p(z) sin(rkx/L) dx
0
Similarly,
em X
V() =+ kz::l kB sin(rkz/L),
that is,
(14) =— / () sin(rkz/L) dzx

The final answer is given by the combination of (12), (13), and (14). It is clearly a “solution”. When is it a classical
solution?

A note about [musical] string. All string instruments are (approximately) described by (10). The difference
is in
e length of the string L;
e linear mass density of the string p [measured in mass per unit length];



e tension of the string 7 [measured in the units of force].

The quantities p and 7 combine nicely to provide the propagation speed:

e
c=,/—.
p

The sound we hear comes (mostly) from the base frequency, corresponding to k = 1:
cm
w1 = f;

The frequencies wy = kw, represent overtones; very roughly speaking, controlling those overtones is a major part of
both the quality of the instrument and the quality of the musician playing the instrument.
Looking at the formula
w1 = L p7
we can now understand the basic math behind the string section of an orchestra: the frequency gets lower as the
string gets longer and heavier [violin-viola-cello-bass]; fine-tuning the string is achieved by changing the tension 7.

A note about battle ropes. The starting point could be the equation
(15) Upy = Uy, u=u(t,x), t >0, z € (0,L),

with boundary conditions u(t,0) = f(¢), u(¢t,L) = 0. The most basic question to address is existence of standing
wave solutions, that is, solutions of the form

Uso(t,z) = F(t)H (),
where the functions F' and H are periodic. A natural way to satisfy boundary conditions is to consider a function
1
(16) un(t, ) = f(t) cos (z <2+n> x), n=0,1,2,...,
which could be a standing wave solution. The main point here is that

cos(0) = 1, cos (z (; T n) L) —0

so the function w,, satisfies the boundary conditions. Plugging u,, into (15) equation, we conclude that u,, is indeed

a standing wave solution if
2
(1
e == (% (53+0)) f0

1
t) = A, coswyt + By, sinwyt, wn:g —4n).
f(@)

that is, if

L \2
How realistic is this result? I would argue: not much, for (at least) two reasons:

(1) Typically, the system starts from rest, that is, f(t) = f’(¢) = 0, which is not possible with the above setting;
(2) Real-life system has damping; for battle ropes you probably call it “resistance”.

As a result, a more realistic model of battle ropes could be a damped wave equation
(17) s + YUty = Cligy

with zero initial conditions u(0,2) = u(0,2) = 0 and boundary conditions u(¢,0) = f(¢), u(t,L) = 0 so that a
compatibility condition holds: f(0) = f/(0) = 0. The extra term ~vu;, with v > 0, represents damping [or
resistance]. How can we solve this equation?

Again, we start with the function u,, from (16) and define

(18) U(t7 1‘) = u(ta .Z‘) - un(tv JU)
If the function w is a solution of (17), then the function v must be a solution of the inhomogeneous wave equation
(19) Vet + YU = Vg + B(t, )

with zero initial and boundary conditions. The function B is
B(t,x) = (un)aa (t,2) = y(un)e(t,x) = (un)ie(t, ).

The solution of (19) can then be written using the variation of parameters formula. [We will discuss the general
version of the formula later; writing out the corresponding solution for (19) and analyzing it is up to you].



Laplace equation in a rectangle: an example

Upp +Uyy =0, 0< <1, O0<y<m, u=u(xy),
u(1l,y) =1, u(0,y) = u(z,0) = u(x,r) = 0. Write

u(x,y) =Y Fi(2)Gi(y)
k=1

with G (0) = Gi(7) = Fk(O) = 0. Then

— = =bp = —A\i:
we need non-zero solutions of
Gi(y) — buGr(y) = 0, Gr(0) = Gy(m) =0,
which, as we know, is only possible for by = —A2. In fact, we also know that
A =k, Gily) = sin(ky).
After that,
F/'(z) — k*Fy(z) =0, Fy(x) = Ay, sinh(kx) + By, cosh(kx).
Because Fj(0) = 0, we have By, = 0, Fy(x) = Ay, sinh(kx), and

u(z,y) = Z Ay, sinh(kx) sin(ky).
k

From

u(lyy)=1= Z Ay, sinh(k) sin(ky)
k

we conclude [after multiplying by a particular sin(ky) and integrating from 0 to ]
4
m(2k + 1) sinh(2k + 1)

A, =0, Agpq =

As a result,
o0

4 X sinh((2k + 1)) sin((2k + 1)y)
u(z,y) = — Z (2k + 1) sinh(2k + 1)

k=1
Can you see that, for (x,y) € (0,1) x (0,7), the function u is infinitely differentiable?

Poisson equation in a square: an example

Uzg + Uyy = —1, u=u(z,y), (z,y) €G, uloc =0,
where G is a square:
G = (0,7) x (0, ).
Now we have to consider the eigenvalue problem for the Laplacian in G [also known as the Helmholtz equation],
Usa + Uyy = =A; ,U, Ulag =0,
look for the solution in the form U(z,u) = Fj(2)G¢(y) so that
F(@)  Gily) 2

Fp(x) © Guly) "M
then conclude from the boundary conditions that
Fi.(z) = sin(kx), G(y) =sin(ly), Mo =k*+ 6%, kL €N.
After that, the solution will be of the form
u(z,y) = ZA,H sin(kx) sin(fy),
k¢
which, after substitution into the original equation gives

(20) Z Apo(k? + 0%) sin(kx) sin(fy) = 1.
[



As we already know, for z € (0,7) and y € (0, ),

728111 2k+1 - 7ézs1n 2€+1 )
o+l w - 20+ 1

and therefore

1 in((2 1 in((20 + 1
(21) 1= 1x 1= 165~ sin((2k+1)z) sin((20+ 1)y)
2 2k +1 20+ 1

Comparing (20) and (21), we conclude that
16 sin((2k + 1)z) sin((2¢ + 1)y)
w2 = (2k + 1)(20+ 1)((2k + 1)% + (20 + 1)?)

u(z,y) =
Can you see from this formula that u(x,y) > 0 for all (z,y) € G? Can you see from this formula that u is infinitely
differentiable in G?

The big (and general) picture: orthogonal expansion in eigenfunctions of self-adjoint operators

As a motivation, let us take another look at the computations for the heat equation on the interval, specifically,
those leading to the functions G and numbers Ag.

Denote by X the collection of twice-continuously differentiable functions f = f(z) on [0, L] such that f(0) =
f(L) =0. For f € X define the operator A by

Also, for f,g € X, define the inner product

L
= [ rea@ s 117 = 1.0
we allow the possibility that the functions f, g can take complex values. Note that

(22) (gvf):W

Then the operator A is
(1) non-negative definite: for f € X, we integrate by parts

/f” F@)de = - /f ) df'(z) — f'()F(@)

remember that f(0) = f(L) =
(2) symmetric: for f,g € X, we 1ntegrate by parts twice

f” v)de = — / 9@ df () - (@)

=L

L
| r@rE e = e o

r=

|+ [ e

a:L
/f 7@ dz = (1, Alg)):

once again, we use that f(0 ) = f(L) =¢g(0) =g(L) =0.
Next, we say that G € X is an eigenfunction of A if |G|l > 0 and there exists a number p € C such that
A[G](z) = uG(z), « € (0,L).
The following result could be familiar from linear algebra: a symmetric matrix has real eigenvalues, and the eigen-

vectors corresponding to different eigenvalues are orthogonal; the eigenvalues of a symmetric non-negative definite
matrix are non-negative. Turns out, this is not just about matrices.

= xg

Proposition If A is symmetric, that is,

(23) (Alfl 9) = (f, Alg)),
then p € R and, if A[G1] = p1G1, A[G2] = peGso with puy # ps, then
(G1,G2) = 0.
If, in addition A is non-negative definite, that is
(24) (Alf], f) >0, feX,

then p > 0.



Proof. Taking f = g = G in (23) and using (22),
plGI? = (A[G],G) = (G, A[G]) = (G, uG) = m||G|1*.

Because ||G|| > 0 by the definition of the eigenfunction, we get u = @, that is, u € R.
Next, take f = G1,9 = G2 in (23). Then

u1(G1,G2) = p2(Gr, Go).

Because 1 # o, we conclude that (G1,Gs) = 0.
Finally, take f = G in (24). Then p||GJ|? > 0, that is, u > 0. O

Under some additional technical assumptions, which hold in all examples we will ever encounter, the collection of
the eigenfunctions Gy, is complete, in the sense that all “reasonable” functions f = f(z) can be written as

(25) fl@)=>" fiGr(x)
k

for some numbers f; € C. The following table summarizes how all the expansions we know [Fourier sine, Fourier
cosine, and usual Fourier| are particular cases of (25). In fact, the only thing that changes is the boundary conditions.

Operator FEigenfunctions Gy, Expansion

A[f](z) = —f"(x), f(0)=f(L)=0 sin(rkxz/L), k € N  Fourier sine
A[f](z) = —f"(x), f'(0)=f'(L)=0 cos(rkxz/L), k € Z, Fourier cosine
Alf@) = — (@), F0) = F(L), ['(0) = (L) explike/L), k€2 Fourier

One other example that is doable in closed form is

Alfl(z) = —f"(z), f(0)=0, f'(L)=0.
Indeed, direct computations show that A is symmetric and positive definite. Then a quick repetition of the compu-
tations from the analysis of the heat equation leads to the relations

Gi(z) + NGi(2) = 0, Gr(0) = GL(L) =0,
which imply
Gi(z) = sin(A\xx),
and cos(AyL) = 0, that is
Tow

(26) )\k = ﬁ + Zk, k e Z+.

As a quick concept check, verify that the eigenfunctions of
Alfl(z) = —f"(z), f'(0)=f(L)=0
[now the derivative is zero at the left point] are
Gi(x) = cos(Agx)

with the same A; as in (26). Note that neither of the resulting expansions (25) are truly Fourier, but might still be
useful, for example, to understand the Brownian motion [a random process] or the clarinet [a musical instrument].



