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The Brunn-Minkowski Inequality in Gauss Space 

Christer  Borell (Uppsala)  

1. Summary 

In [11] H. P. M c K e a n  explains why it is a fruitful idea to think of Wiener  measure  
as the uniform distr ibution on an infinite-dimensional spherical surface S~ r 
of  radius oo ~. This interpretat ion of Wiener  measure  and, more  generally, of  an 
arb i t ra ry  Gauss  measure  will lead us to an inequali ty of  the Brunn-Minkowski  
type. The  inequality so obta ined seems, for m a n y  reasons, to be a bet ter  one than 
that  obta ined in [4]. We shall give two appl icat ions of  the Brunn-Minkowski  
inequality proved  in Section 3. In Section 4 we give upper  and lower bounds for 
hitt ing probabil i t ies  of  Brownian motion.  This has appl icat ions to the heat  
equat ion [17] but  we will not go into this here. Finally, in Section 5, we will, under  
some appropr i a t e  condit ions,  compu te  

lim t -  2 log/t(cp _> t), 
t ~ o O  

where # is a Gauss  measure  and ~0 is a measurable  sublinear function, which is 
finite a.s. [/~]. This extends work  of Marcus  and Shepp [9]. 

2. Notation 

Let E be a real, locally convex Hausdorff vector space (1.c.s.) and # a Borel p rob-  
abili ty measure  on E. We define 

/ t ,  (A) = sup {p(K): K compac t  c A }, 

where A is an arb i t ra ry  subset of  E. A Borel probabi l i ty  measure  p on E is said 
to be a R a d o n  probabi l i ty  measure  if # , ( A ) = # ( A )  for every Borel subset A of E. 
A R a d o n  probabi l i ty  measure /~  on E is, by definition, a Gauss  measure  if the 
image measure  ~(~) is a Gauss  measure  on lit for every ~ belonging to the topologi-  
cal dual  E'  of  E. We shall say that  a pair  (E, /0  is a Gauss  space if (i) E is a 1.c.s. 
(ii) p is a Gauss  measure  on E and  (iii) the m a p  
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is continuous when E' is equipped with the Mackey topology ~(E', E)} Assuming 
that (E, p) is a Gauss space we deduce that # has a barycentre m. We set po(- )= 
/~(- + m) and observe that (E,/~o) is a Gauss space. Let ~ff be the closure of E' in 
L2(#o). Then for every h E ~  there exists a unique a c e  such that 

( a ,~ )=~ h . ~ d l~ o ,  ~eE'. (1.1) 

We thus get a linear mapping A: ~ ~ E by setting A h = a when h and a are 
related as in (1.1). Note that A is injective. We define JY~ =range  (A) and 

( a , b ) ~ = ~ ( A - l a ) . ( A - l b ) d l ~ o ,  a, beo~". 

The vector space Jr", equipped with this Hilbert norm, is called the reproducing 
kernel Hilbert space of (E,/~). In the following we shall say that a triplet (E,/~; ~f') 
is a Gauss space thereby meaning that (E, #) is a Gauss space having reproducing 
kernel Hilbert space o~ff. Let 0 be the identity mapping of ~ into E. Note  that 

o 0 is a continuous linear form on J f  for every ~ E ' .  Furthermore, let 7 be the 
canonical cylinder Gauss measure on ~ff. A computat ion shows that 7(0-1(A))= 
po(A) for every finite-dimensional cylinder set A in E. 

The canonical Gauss measure in d-space is denoted by '/a- We set q)(c0= 
71(] - o% ~[), - oo < ~ <  or. 

If A and B denote subsets of a vector space, we write A +B = {z:z  = x + y  for 
some x e A  and yeB} and A @ B = { x :  x e A  and { x } + B c A } .  

The definitions introduced in this section are very close to those given in [1] 
and [2]. 

3. The Main Result 

We can now formulate the 
space. 

Theorem 3.1. Let (E, p; ~ )  be a 
unit ball in ~ff. Furthermore, let A 
~ [ - - o o ,  + oo] such that 

~(A)  = ~(~). 

Then 

p,  (A + ~ Ox) >= q~(c~ + ~) 

and 

# ,  (A @ ~ Ox) < q~(~ - ~) 

for every ~ > O. 

following Brunn-Minkowski inequality in Gauss 

Gauss space and denote by Ox the closed 
be a #-measurable subset of E and choose 

(3.1) 

(3.2) 

Equality occurs in (3.1) and (3.2) if A is a half-space. 
Note that the set Ox is of p-measure zero if dim Yg" = + oo. (See e.g. [2, Cor. 

(IX, 1; 2)1 or [6, Th. 2.4].) 
The proof  of Theorem 3.1 leans heavily on an observation of Poincar6 [14], 

which has proved to be very useful [11]. In fact, denote by a ,_  I the uniform 

1 It can be proved that (i) and (ii) imply (iii). 
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distr ibution on the (n -1 ) -d imens iona l  spherical surface S"-~(n ~) of radius n ~. If 
M is a Lebesgue measurable  subset of IRe, and n>d, we set 

Ca, .(M) = {x e S"-  l (n~): p r o j ~  (x)~ M}. 

Poincar6 [ t4 ]  then noticed that  

lira a ._  ~ (C~,.(M)) = 7~(m). (3.3) 

Proof of Theorem 3.I. It, clearly, suffices to prove  (3.1) since ( A @ e . O . ) +  
O .  c A. The  p roof  of  the inequality (3.1) will now be divided into two steps. 

Step 1. E = 1R a and I~ = Ya. 

Proof Off Step I. It can be assumed that  - m < e < + .~, and that  A is a Borel 
set in IRe. We choose / 3 e ] - m , ~ [  arbi trar i ly but fixed, and set B = ] - ~ c ,  fl]. 
F r o m  (3.3) we thus have 

~._~ ( Q ,  ~ > ~ ._  1 (Cl . . (B))  

for all n large enough. 
If M is a subset of  IRa we denote by C~,.(M) the set of  all points of S"-*(n ~) 

having a spherical distance at most  equal to e to Ca,.(M). Let Od be the closed 
unit ball in IR a . It is obvious  that  

C~,.(a + e O~) ~ C k.(A).  

Using the Brunn-Minkowski  inequality on S"-t(n ~) [15], we thus have 

O'n ~ 1 (Cn ,  d( A + C. Od) ) > G n _ 1 (C ~ ,  n (B) )  

for all n large enough. By letting n tend to infinity and observing that S"-l(n ~) 
becomes very flat locally for large n, we get from (3.3) that  

Since f l<~  is arbi t rary,  we have the inequali ty (3.1) from the fact that  Oa= O , .  

Step 2. The general case. 

Proof of Step 2. There  is no loss of generali ty to assume that  the barycent re  
of  ,u equals 0. It can also be assumed that  - ~ <~x< + ~ .  Let / 3 ~ ] -  ~ ,  ~[ be 
a rb i t ra ry  but  fixed. Since # is a R a d o n  probabi l i ty  measure  there exists a compac t  
subset K of A such that  #(K)>q~(fl). To prove  (3.1) it is enough to establish the 
inequality 

/ t(K + e Ox) => q~(fl + e). (3.4) 

To  this end we denote  by Y ( K )  the family of all weakly closed finite-dimensional  
cylinder subsets of E containing K. More  explicitly this means  that  FerN(K) if 
and only if there exist a positive integer n, ~1 . . . . .  ~ ,eE ' ,  and a closed subset M 
of IR" such that  

F={xeE:(~(x) . . . .  , ~ . ( x ) ) e M}  (3.5) 
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and F D K. The Hahn-Banach separation theorem easily gives that 

N IF: Fe~-(K)] =K. 
(Compare [4].) 

We will now make use of the representation of # explained in Section 2. It 
is obvious that 

~(0-~(f))> 4~(3) 
for every F~o~(K). Suppose FE~(K) is defined by (3.5). We have already 
remarked that ~j o 0, j = 1, . . . ,  n are bounded linear forms on Y .  We denote by L 
the linear submanifold of • spanned by these elements. Step t then yields 

7(0-1 (F) + e(Ox c~ L)) > 4~(fl + ~). 

Hence 

#(V + ~ O. )  > 4,(,q + e.) 

for every Fee(K). 
We now claim that Ojc is a weakly compact subset of E. To this end it is enough 

to show that the mapping 0: Jl,--+ E,  is continuous. This follows at once from 
the identity 

(a,~)=(a,A~)ar, ae..,~, ~eE'. 

Since Oxr is a weakly compact subset of E it is readily seen that 

[ F +  ~Ojc: EeoC(K)] c K  + t O , .  

Furthermore, since # is a Radon probability measure, we have 

#(~ [F+eO,: Fe~,~(K)])= inf #(F+eOx). 
FEe'(K) 

Summing up, we obtain (3.4). The case when equality occurs in (3.1) and (3.2) 
follows by direct computation. This proves Theorem 3.1. 

The rest of this paper is devoted to various applications of Theorem 3.1. 

4. Hitting Probabilities for Brownian Motion 

Let (Bt),> o be the standard d-dimensional Brownian motion process starting at a 
fixed point z~lR e [7], and let M be a Borel subset of IR e. We denote by T~ the 
first hitting time of M, that is 

TM =inf  { t>0:  B,~M}. 

Note that T M is an IR +-valued random variable [3, p. 54]. We define 

M , =  {zelRe: dist.(z, M)<~} 

and 

M_~ = {z e IRe: dist. (z, ~ M) > ~} 

for e>0 .  
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With these convent ions  we shall p rove  

Theorem 4.1. Suppose ~ is a given positive real number and choose ~ [ - 0% + ov] 
such that 

P~( TM < ~ )= ~(ct). 

Then 

Pz(TM < T)?> ~(o~ +c,, -r -�89 

and 

P~(TM o<r)<~(~--e- r-�89 

f o r  every' c > O. 

ProoJJ The second inequali ty follows immediately  from the first one since 
(M _ ~)~ = M. 

A convenient  model  for the d-dimensional  Brownian mot ion  process 
start ing at  the origin is the stochastic process (W, (C(IR+)) e, (x,)t>o), where W is 
Wiener  measure  on (C(IR+)) a and x, is the coordinate  map  x--+ x(t) of (C(1R+)f 
into 1R a. It is welt known and easy to prove  that  an element ae(C(lR+))  a belongs 
to the reproducing  kernel Hilbert  space of the Gauss  space ((C(1R+)f, W) if and  
only if there exists an element b~(L2(1R+)) ~ such that  

t 

a( t )=  ~b(s)ds,  t>=O. (4.1) 
0 

We also have  
co 

[jail 2 = ff [b(s)l 2 ds. 
a 

T h e o r e m  3.1 thus gives 

P~({ T~ <r/+~,- ~-~ O,~)>_-~(~ + ~. r-~) 

for every e > 0. We now cla im that  

{TM<r } + e .  r - � 8 9  { T M <  r}. (4.2) 

In fact, assume that  y belongs to the left-hand side and l e t y = x + c ,  r- �89 where 
TM(x)<r  and a ~ O x .  Then  X( to)eM for some t o t ] 0 ,  z[ and 

]a(to) [ =< t o - Ib(s)[ 2 ds , 

if a and b are related as in (4.1). Hence y ( t o ) e M , ,  which proves  (4.2) and the 

theorem. 

5. Tail Probabilities for Sublinear Functions 

Let ( X k ) ~  be a real-valued Gauss ian  stochastic process and assume that  
P (sup  IXkf < + ~ ) =  1. Under  these assumpt ions  Marcus  and Shepp [-9, Th. 2.5] 
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prove that 

lim t -2 log P(sup IXkl > t)= - (2  sup Var (Xk)) -1. 
t ~ o o  

In this section our main result is Theorem 5.2, which extends the theorem of 
Marcus and Shepp. Before formulating our result we must give some definitions 
and preliminary results. 

Let E be an 1.c.s. A function r E - o ] -  o-,), +oo]  is said to be an ~ 
sublinear function if 

qo(x + y)<=q~(x)+~o(y), x, y~E, 

and 

q)(2x)=2~o(x), 2>0,  x~E.  

Here 0- + oo = 0. If, in addition, the function q) is symmetric, we shall say that ~0 
is an N +-valued seminorm. 

Theorem 5.1, Let (E, #; ~f~) be a Gauss .space and denote by m the barycentre 
of p. Furthermore, assume that E is a Souslin space and let ~o be an ~ 
universally Borel measurable sublinear function on E such that la(~o < + oo) > �89 

Then 

a) !/, in addition, 

q~(-m)< + ~ ,  (5.1) 

the restriction of (p to J{  is finite-valued and 

Ilcptl,r =- sup (p(a) < + co. 
aeOjc  

b) /f, in addition, q~ is an ~ +-valued seminorm the condition (5.1) is automatically 
fulfilled. 

We recall that a topological space is a Souslin space if it is a continuous image 
of a separable, metric, and complete space [1]. 

Easy examples show that the conclusion of part a), in general, is wrong without 
the assumption (5.1). 

The proof of Theorem 5.1 is based on two lemmas. 

Lemma 5.1. Let E be a Banach space and q) a real-valued universally Borel 
measurable sublinear .[unction on E. 

Then ~o is continuous. 

Under the stronger assumption that q~ is Borel measurable the conclusion of 
Lemma 5.1 is an immediate consequence of [10, Th. 3] and Baire's theorem. 
It can be of some interest to point out that our proof is independent of Baire's 
theorem. For example Lemma 5.1, obviously, contains (a weak form of) the Banach- 
Steinhaus theorem. Our method of proof is to some extent similar to the proof of 
Douady's lemma given by L. Schwartz [16]. (See also Note Added in Proof at 
the very end of this paper.) 

Proof of Lemma 5.1. We first assume that Co is a seminorm. For short, we 
shall write IR~q=IR ~ [ - 1 ,  1 ]~=I  ~, and g '~(N)={ ~176 respectively. Let ok>0, 
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k e N, and define a linear mapp ing  u: IR ~~ - ,  IR ~'~ by setting u(t)= (t k ak), t = (tk)e tR ~. 
We denote  by v the infinite product  measure  HN71, and set ~ = u(v). It is, clearly, 
possible to choose the a k such that  g ( ~ ) =  1. Now let e~eE, k e N ,  be an arbi t rary  
sequence in E such that  _r Ilekll < + ~ ,  where It" II denotes the norm in E. It is 
enough to show that  

sup ak rP(ek) < + :~.  (5.2) 

We now define tk(t)=9(Z'tkek), t=( tk )e I  ~, and then extend @ to d ~ so that  
becomes  homogeneous  of degree one. Finally, set ~9 = + oo on IR ~ \ (~'. Then 
is a universally Borel mea.surable IR+-valued seminorm on IR ~ and ~ <  +oo 
a.s. [/~]. Since/~ is a Gauss  measure,  we have that 6e /2(~) .  (See e.g. [8], [12], or  
[4].) Now set Ck)=(0 . . . .  , O, ta, O, ...) when (tk)elR ~ and t k is placed in the (k + 1)-th 
coordinate .  We have 

tp(t(k))<�89189 te lR  ~. (5.3) 

Note  also that  

t) (2 t tk~- t) dl~(t) = ~ ~ (t) dl~(t)= C < + oo 

and 

tk(r k~) dll(t) = (2/x) ~. ~ (p(ek). 

An integrat ion of the inequality (5.3) with respect to/~ thus yields (5.2). 
To prove  the general case set ~oo(x)=max(O,~o(x))+max(O, 9 ( - x ) ) ,  x~E .  

Then r is a real-valued universally Borel measurable  seminorm and the case 
already proved shows that  90 is continuous.  Therefore  ~0 must be bounded  from 
above  in a ne ighbourhood  of the origin, which is equivalent to continuity.  This 
proves  L e m m a  5.t. 

To p rove  Theo rem 5.1 we also need 

L e m m a  5.2. Let (E, #; ~ )  be a Gauss space and assume that E is a SousIin space. 

Then 

: K ~ I R + .  (A - A) 

.[or every #-measurable subset A orE  such that #(A)>0 .  

L e m m a  5.2 is proved by LePage  [13] under  slightly different assumpt ions .  
See also [2, L e m m a  (1 X, 1 ; 5)-]. The  p roof  will not  be repeated here. 

Proof of  Theorem 5.1. We shall first p rove  par t  a). Let C =  {q0 < + .~}. The set 
C is a convex cone of # -measure  p > �89 In part icular,  # o ( - m  + C ) =  p, which yields 
~*o ( m -  C)-~ p. The  set ( - m  + C)c~ ( m -  C) is thus of posit ive #o-measure and Lem- 
m a  5.2 implies that  

~ / c l R + - ( - m  + C ) ~ ( m - C ) .  

Using (5.t) we now easily get that  r is finite-valued on ~ / .  
We shall now prove that  the m a p  q~l~ = r ~ 0 of  (J~f, tl Itx) into lR is cont inuous.  

T o  this end we first observe that the a-a lgebra  generated by the weakly open sub- 
sets of E is identical with the Borel a -a lgebra  ~ ( E )  in E since E is a Souslin space 
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[1]. Fur thermore ,  we know that  the m a p  0: o~ff, ~ E~ is cont inuous.  The function 
goo0 is thus universally weakly Borel measurab le  and therefore also universally 
strongly Borel measurable  on :~((. L e m m a  5.1 now proves part  a). 

We shall now prove  par t  b). Suppose to the cont ra ry  that  g o ( - m ) =  + ~ ,  
and set A = { x e E "  g o ( - m  + x ) =  +oo}.  Then A w ( - - A ) = E .  Hence # o ( - A ) = � 8 9  or, 
equivalently,  # ( m - A ) > � 8 9  But since go is symmetr ic ,  we then have  that go= + co 
on m - A ,  a set of /z-measure  >�89 This contradic t ion  proves part  b) and concludes 
the p roof  of  Theo rem 5.1. 

We can now formulate  the main  result of this section. 

Theorem 5.2. Let  (E, p; ~g') be a Gauss space and denote by m the barycentre of 12. 
Furthermore, assume that E is a Souslin space and let go be an ~ universally 
Borel measurable sublinear function on E such that g( go < + oo ) > �89 and 99( - m) < + or.). 

Then 

lim t - 2 l o g  #(go >= t) = - (2 l[ go [l ~ ) -  1. 
r  

In particular, #(go < + ~ )  = 1. 

Proof. Choose  6 > 0 arbitrari ly.  Then there exists a ta > 0 such that  

- (1 + 3)- t2/2 <= log ( 1 - ~/' (t)) __< - (1 - 3)- t2/2 (5.4) 

for all t > ta. 

Let us first assume that  tlgotl,>0. By assumpt ion,  there exists a t o <  + m  
such that  p(go < to )>  0. N o w  choose  a elR so that  

#(go < to) > 4~(~). 

Let ~ > 0  be given and note  that  

{gO<to} +eOyr c {gO < to+  ~ tl go ll~'} 

T h e o r e m  3.1 thus implies that  

/~(gO < to + ~ I1 gO IIx) > 4~(~ + ~). 

Hence  

/z(gO >_ t) =< 1 - c/,(~ + 11 gO I[.~ 1" (t - to)) 

for every t >_-to. The  inequality (5.4) now tells us that  

lim t -  2 log#(go > t ) _  < - - ( 2  I]gO]]~,) -1 . 

In part icular,  this shows that/~(gO < + ~ )  = 1. 

Now let 1 > 3 > 0  be as in (5.4) and choose a e O x ,  I[all~= 1, such that  

gO(a)> (1 -,~) II gOlly. 
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To prove Theorem 5.2, under the addit ional  assumption that IlcPlt~r>0, it is 
enough to establish the inequality 

lim t -  21og#((p> t )>  - ( 1 +  6). (2(1 - 6 )  2 ll(ptl.~-) -~ . (5.5) 
t ~ + a o  

To this end it can be assumed that/~ = ~to. In fact, since 

{ ( p > t } _ m  + { ( p > t + ( p ( - m ) } ,  

we have that I~ ( (p>t )>#o( (p>t+(p( -m) )and  the assertion is obvious. 

F rom now on it will thus be assumed that # = # o  and we shall prove (5.5). 
Therefore define E-valued Gaussian random variables U and V, respectively, by 
setting U(x)=a(A- la ) (x ) ,  V ( x ) = x - U ( x ) ,  x~E.  It follows at once that ~oU and 
4o Vare  or thogonal  in LZ(tO for every deE ' .  Since E is a Souslin space, we deduce 
that U and V are independent  based over the probabil i ty space (E ,~(E) ,  p). By 
first using Fubini 's theorem and then Jensen's inequality, we have 

log/z((p > t )>~ log/~(U~ - v  + {(p >= t}) V(Iz)(dv). (5.6) 

Fur thermore ,  since (p < + oo a.s. [/~], it is easy to show that the set 

M =  { v 6 E t ( p ( - v ) <  + co} 

is of V(/0-measure one. Ifv~ M, we have that { U~ - v + {(p > t} } _~ {(p(U) > t + r v)} 
n {A- 1 a > t~}, where t~ is as in (5.4). Hence 

{Ue - v +{(p> t}} _ {A -1 a t [ m a x  ((t +q~(-v))/(p(a), t~), + oo[ }, 

which yields 

t - Z l o g ~ { U e - v + { ( p > t } } > - � 8 9  max ~ t (p (a ) '  t 

for all v e M .  Since M is of V(#)-measure one, we know that 

j" (p~(- v) V(~)(dv)< +oo. 

By dominated  convergence, we tlaus get (5.5) from (5.6) and the definition ofa .  
One the other  hand, if IJ qo II~-- 0, the first part of the proof  shows that p((p __< to) = 1 

for a suitable t. The  result is thus obvious in this case. This proves Theorem 5.2. 
The following theorem is mainly included as an example of an application of  

Theorem 5.2. (Compare  [9, Th. 2.6].) 

Theorem 5.3. Let (B~)t>=o be the d-dimensional Brownian motion process starting 
at the origin, and let 2 be a a-finite positive Borel measure on 1R + . 

Set 

X = ~ [Bt[ d2(t). 

Then P ( X  < + oo)= 1 if and only if  

t~d2(t)< + ~ .  

Furthermore, if this condition is fulfilled it holds 

lim t -2 logP(X>t)=_ _~(~x 22 ([s, + ooDds) - z  �9 
t ~ o o  

Proof We choose the same representat ion of (Bt)t>=o as in Section 4. The first 
part of the theorem follows easily from I-4, Th. 4.2] or 1-5, Th. 6.1]. Using Theorem 
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5.2 a n d  s u i t a b l e  p a r t s  of  t h e  p r o o f  of  T h e o r e m  4.1, we o n l y  h a v e  to  s h o w  t h a t  

t d s  d 2 ( t ) =  o~ sup  j" o~ b(s) ~ 22([,% + ~ [ ) d s ,  

0 

w h e r e  the  s u m p r e m u m  is t a k e n  o v e r  all  b ~ ( L  2 ([0,  + oo[))  d such  t h a t  

0O 

[b(s)12ds<= 1. 
o 

This follows at once from the Cauchy-Schwarz inequality. 

Note Added in Proof. The author is grateful to the referee for pointing out a completely different 
proof of Lemma 5.1. It can be assumed that E is a separable Banach space. In fact, assume that q~ is 
an ~,-valued universally Borel measurable seminorm on E and set E, = {tp < n}. Since UE~ = E, all the 
sets E, cannot be a zero Haar set. Therefore, the set E , - E ,  contains a neighbourhood of the 
origin for a suitable n. (See Theorem 7.3 in J. P. R. Christensen, Topology and BoreI Structure, Mathe- 
matics Studies 10, North-Holland 1974). The seminorm q} is thus bounded in a neighbourhood of the 
origin. 
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