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The Brunn-Minkowski Inequality in Gauss Space

Christer Borell (Uppsala)

1. Summary

In [11] H. P. McKean explains why it is a fruitful idea to think of Wiener measure
as the uniform distribution on an infinite-dimensional spherical surface S*(00?)
of radius co?. This interpretation of Wiener measure and, more generally, of an
arbitrary Gauss measure will lead us to an inequality of the Brunn-Minkowski
type. The inequality so obtained seems, for many reasons, to be a better one than
that obtained in [4]. We shall give two applications of the Brunn-Minkowski
inequality proved in Section 3. In Section 4 we give upper and lower bounds for
hitting probabilities of Brownian motion. This has applications to the heat
equation [17] but we will not go into this here. Finally, in Section 5, we will, under
some appropriate conditions, compute

lim 1~ log u(p 2 1),
t— o0

where yu is a Gauss measure and ¢ is a measurable sublinear function, which is
finite a.s. [i]. This extends work of Marcus and Shepp [9].

2. Notation

Let E be a real, locally convex Hausdorff vector space (1.c.s.) and p a Borel prob-
ability measure on E. We define

u, (A)=sup {u(K): K compact = 4},

where A is an arbitrary subset of E. A Borel probability measure y on E is said
to be a Radon probability measure if u, (4)=p(A4) for every Borel subset 4 of E.
A Radon probability measure u on E is, by definition, a Gauss measure if the
image measure &(u) is a Gauss measure on R for every & belonging to the topologi-
cal dual E’ of E. We shall say that a pair (E, u) is a Gauss space if () E isal.c.s.
(ii) u is a Gauss measure on E and (iii) the map

E's¢— [ dueR
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is continuous when E’ is equipped with the Mackey topology t(E’, E)} Assuming
that (E, ) is a Gauss space we deduce that u has a barycentre m. We set uy(-)=
u(+ +m) and observe that (E, u,) is a Gauss space. Let 3 be the closure of E’ in
I?(u,). Then for every he# there exists a unique acE such that

<a,&y=[h-&dp,, CeE. (1.1)

We thus get a linear mapping A: # — E by setting Ah=qa when h and q are
related as in (1.1). Note that A is injective. We define /" =range (A1) and

(a,byp=f(A""a)- (A"  b)dpy, abeX.

The vector space 4", equipped with this Hilbert norm, is called the reproducing
kernel Hilbert space of (E, u). In the following we shall say that a triplet (E, u; )
is a Gauss space thereby meaning that (E, y) is a Gauss space having reproducing
kernel Hilbert space 2. Let 8 be the identity mapping of 2" into E. Note that
£ 0 is a continuous linear form on ¢ for every {eE’. Furthermore, let y be the
canonical cylinder Gauss measure on 4. A computation shows that y(8=(4))=
1o (A) for every finite-dimensional cylinder set A in E.

The canonical Gauss measure in d-space is denoted by y,. We set ®(a)=
720100, af), — o0 <a< oo,

If A and B denote subsets of a vector space, we write A +B={z: z=x+y for
some xe A and yeB} and A©B={x:xeA and {x} + Bc A}.

The definitions introduced in this section are very close to those given in [1]
and [2].

3. The Main Result

We can now formulate the following Brunn-Minkowski inequality in Gauss
space.

Theorem 3.1. Let (E, u; #) be a Gauss space and denote by Oy the closed
unit ball in A". Furthermore, let A be a p-measurable subset of E and choose
ae[— o0, + 0o] such that

1(A)=(w).

Then

B (A+E0x) 2= P(a+¢) (3.1
and

1 (ACe0 ) P(a—¢) (3.2)

for every 0.

Equality occurs in (3.1) and (3.2) if A is a half-space.

Note that the set O, is of y-measure zero if dim " = + co. (See e.g. [2, Cor.
(IX, 1; 2)] or [6, Th.2.4])

The proof of Theorem 3.1 leans heavily on an observation of Poincaré [14],
which has proved to be very useful [11]. In fact, denote by o,_, the uniform

! 1t can be proved that (i) and (ii) imply (iii).



The Brunn-Minkowski Inequality in Gauss Space 209

distribution on the (n— 1)-dimensional spherical surface $"~!(n?*) of radius n*. If
M is a Lebesgue measurable subset of IR?, and n=d, we set

Cy (M)={xeS"~*(n*): projga (x)e M}.
Poincaré [14] then noticed that
lima,_;(Cy ,(M))=74(M). (3.3)
Proof of Theorem 3.1. It, clearly, suffices to prove (3.1) since (AQ¢04) +
£¢0, < A. The proof of the inequality (3.1) will now be divided into two steps.
Step 1. E=R* and u=1y,.

Proof of Step 1. It can be assumed that — oo <a =< + 00, and that 4 is a Borel
set in R% We choose fe]—oo,«f arbitrarily but fixed, and set B=]—ac, f].
From (3.3) we thus have

n1(Ca n(A)> 0, (Cy n(B))

for all n large enough.

If M is a subset of R? we denote by C5 (M) the set of all points of $"~*(n%)
having a spherical distance at most equal to ¢ to C, ,(M). Let O, be the closed
unit ball in R% It is obvious that

Cyn(A+e04)> Cg u(A).
Using the Brunn-Minkowski inequality on S"~!(n?*) [15], we thus have
G i(Co sl A+ 0> 0, 1(C] (B))

for all n large enough. By letting n tend to infinity and observing that $"~*(n?)
becomes very flat locally for large n, we get from (3.3) that

Ya(A+e0)Z P(B+2).

Since f<a is arbitrary, we have the inequality (3.1) from the fact that O;= 0Oy
Step 2. The general case.

Proof of Step 2. There is no loss of generality to assume that the barycentre
of u equals 0. It can also be assumed that —oo <a< +o0. Let fe]—o0,af be
arbitrary but fixed. Since p is 2 Radon probability measure there exists a compact
subset K of A such that u(K)>®(p). To prove (3.1) it is enough to establish the
inequality

(K +£0y) 2 D(B+¢). (3.4)

To this end we denote by % (K) the family of all weakly closed finite-dimensional
cylinder subsets of E containing K. More explicitly this means that Fe# (K) if
and only if there exist a positive integer n, &, ..., &,€E’, and a closed subset M
of R" such that

F={xeE: ({{x), ..., &,(x)eM} (3.5)
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and F > K. The Hahn-Banach separation theorem easily gives that
N [F:Fe#(K)]=K.
(Compare [4].)

We will now make use of the representation of u explained in Section 2. It
is obvious that

YO (F)>2(h)
for every Fe# (K). Suppose FeZ (K) is defined by (3.5). We have already

remarked that £;00, j=1, ..., n are bounded linear forms on %". We denote by L
the linear submanifold of # spanned by these elements. Step 1 then yields

(O~ H(F)+e(Oy N L)) > P (B +e).
Hence

W(F +0y)>d(B+e)

for every Fe % (K).

We now claim that O, is a weakly compact subset of E. To this end it is enough
to show that the mapping 6: 2, — E_ is continuous. This follows at once from
the identity

{a,&>={a,AE>y, aeA, E€E.

Since O, is a weakly compact subset of E it is readily seen that
(V[F+e0y: FeF(KY]cK+¢0,.

Furthermore, since u is a Radon probability measure, we have

WO\ [F+20,: Fe# (KY)=_inf u(F+50s)

Summing up, we obtain (3.4). The case when equality occurs in (3.1) and (3.2)
follows by direct computation. This proves Theorem 3.1.
The rest of this paper is devoted to various applications of Theorem 3.1.

4. Hitting Probabilities for Brownian Motion

Let (By),» o be the standard d-dimensional Brownian motion process starting at a
fixed point zeR? [7], and let M be a Borel subset of R. We denote by T,, the
first hitting time of M, that is

Ty =inf {t>0: B,e M}.

Note that T, is an R , -valued random variable [3, p. 54]. We define
M,={zeR": dist.(z, M) <&}

and
M _,={zeR*: dist.(z, ~M)=¢}

for 0.
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With these conventions we shall prove

Theorem 4.1. Suppose 1 is a given positive real number and choose ac[ — oz, + 0]
such that

B(Ty <1)=&(x).

Then

B(Ty <12 ®(a+e-17%)
and

P(Ty <tO)SPla—s-1°

'

)

for every 0.

Proof. The second inequality follows immediately from the first one since
(M_).=M.

A convenient model for the d-dimensional Brownian motion process
starting at the origin is the stochastic process (W, (C(R,))", (x,)»o), where W is
Wiener measure on (C(R ,))* and x, is the coordinate map x —x(t) of (C(R,))*
into IR? It is well known and easy to prove that an element ae(C(R . ))* belongs
to the reproducing kernel Hilbert space of the Gauss space ((C(R,))%, W) if and
only if there exists an element be(I*(R , )Y such that

a(t)=§b(s)ds, t=0. 4.1)
We also have

lall = 1) ds,

Theorem 3.1 thus gives

B({Ty<t}+e- 171042 P0+e 177
for every ¢>0. We now claim that

{TM<T}+8'T‘%OXC{TM£<T}. (4~2)

In fact, assume that y belongs to the left-hand side and lety=x+¢- 1% g, where
T,s(x)<t and ae O, . Then x(t;)e M for some t,€ 10, t[ and

S
2
s

lalto) St} (f 1b(s)? ds)

if ¢ and b are related as in (4.1). Hence y(to)e M,, which proves (4.2) and the
theorem.

5. Tail Probabilities for Sublinear Functions

Let (X,)..n be a real-valued Gaussian stochastic process and assume that
P(sup | X,| < 4+ o0)= 1. Under these assumptions Marcus and Shepp [9, Th.2.5]
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prove that

lim t~2 log P(sup | X,|=t)= — (2 sup Var(X,))~*.

t— oo

In this section our main result is Theorem 5.2, which extends the theorem of
Marcus and Shepp. Before formulating our result we must give some definitions
and preliminary results,

Let E be an lc.s. A function ¢: E—]— o0, + 0] is said to be an °R-valued
sublinear function if

px+y)sSe(x)+o(y), x, yeE,
and

e(Ax)=Ap(x), A=0, xekE.

Here 0+ +00=0. If, in addition, the function ¢ is symmetric, we shall say that ¢
is an R , -valued seminorm.

Theorem 5.1. Let (E, ui; A") be a Gauss space and denote by m the barycentre
of u. Furthermore, assume that E is a Souslin space and let ¢ be an °R-valued
universally Borel measurable sublinear function on E such that p(p < +00)>3.

Then

ay) if, in addition,
@(—m)<+ 0, (5.1)
the restriction of ¢ to A is finite-valued and

l@llx= sup p(a)< + 0.
acOy

b) if, in addition, ¢ is an R _-valued seminorm the condition (5.1) is automatically
Sulfilled.

We recall that a topological space is a Souslin space if it is a continuous image
of a separable, metric, and complete space [1].

Easy examples show that the conclusion of part a), in general, is wrong without
the assumption (5.1).

The proof of Theorem 5.1 is based on two lemmas.

Lemma 5.1. Let E be a Banach space and ¢ a real-valued universally Borel
measurable sublinear function on E.
Then @ is continuous.

Under the stronger assumption that ¢ is Borel measurable the conclusion of
Lemma 5.1 is an immediate consequence of [10, Th.3] and Baire’s theorem.
It can be of some interest to point out that our proof is independent of Baire’s
theorem. For example Lemma 5.1, obviously, contains (a weak form of) the Banach-
Steinhaus theorem. Our method of proof is to some extent similar to the proof of
Douady’s lemma given by L. Schwartz [16]. (See also Note Added in Proof at
the very end of this paper.)

Proof of Lemma 5.1. We first assume that ¢ is a seminorm. For short, we
shall write RN=R®, [—1,1N=1I%, and ¢/®(IN)=/", respectively. Let ¢,>0,
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ke N, and define a linear mapping u: R® — IR*® by setting u(f)=(t,a,), t =(t,)e R™.
We denote by v the infinite product measure 1y, , and set u=u{v). It is, clearly,
possible to chcose the o, such that u(/*)=1. Now let ¢, E, ke N, be an arbitrary
sequence in E such that X|e, | < + oo, where || +|| denotes the norm in E. It is
enough to show that

Sup oy ¢le) < + 0. (5.2)

We now define ¢ {t)=p(X 1, e,), t =(t,}e1®, and then extend ¢ to /* so that y
becomes homogeneous of degree one. Finally, set y =+ o0 on R®~¢™. Then
is a universally Borel measurable R, -valued seminorm on R* and ¢ < +o0
as. [u]. Since u is a Gauss measure, we have that ¥ e L (u). (See e.g. [8], [12], or
[4]) Now set t*=(0,...,0, 1,0, ...) when (t,)e R* and t, is placed in the (k + 1)-th
coordinate. We have

WY (O +3Y I -, teR™, (53)
Note also that

fy@t—ndu@=fy ) du)=C< +oo

and

§U ) duty=2/n) orpley).

An integration of the inequality (5.3) with respect to y thus yields (5.2).

To prove the general case set @,(x)=max (0, ¢(x))+max(0, ¢(—x)), xeE.
Then ¢, is a real-valued universally Borel measurable seminorm and the case
already proved shows that ¢, is continuous. Therefore ¢ must be bounded from
above in a neighbourhood of the origin, which is equivalent to continuity. This
proves Lemma 5.1.

To prove Theorem 5.1 we also need

Lemma 5.2. Let (E, u; ') be a Gauss space and assume that E is a Souslin space.
Then

AR, -(A-A)
for every p-measurable subset A of E such that p(A)>0.

Lemma 5.2 is proved by LePage[13] under slightly different assumptions.
See also [2, Lemma (1 X, 1; 5)]. The proof will not be repeated here.

Proof of Theorem 5.1. We shall first prove part a). Let C={¢ <+ 20}. The set
C is a convex cone of y-measure p>1. In particular, p,(—m +C)=p, which yields
o (m~— C)=p. The set (—m + C) ~ (m— C) is thus of positive u,-measure and Lem-
ma 5.2 implies that

A <R, -(—m+C)nim—C).

Using (5.1) we now easily get that ¢ is finite-valued on X"

We shall now prove that the map @ly =@o8 of (A, || |l¥) into R is continuous.
To this end we first observe that the g-algebra generated by the weakly open sub-
sets of E is identical with the Borel ¢-algebra B(E) in E since E is a Souslin space
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[1]. Furthermore, we know that the map 8: #, — E_ is continuous. The function
@00 is thus universally weakly Borel measurable and therefore also universally
strongly Borel measurable on . Lemma 5.1 now proves part a).

We shall now prove part b). Suppose to the contrary that ¢(—m)= +c0,
and set A={xeE: ¢(—m+x)= +00}. Then Au(—A)=E. Hence p,{~ A)=1 or,
equivalently, u(m- 4)=4. But since ¢ is symmetric, we then have that o= +
on m— A, a set of y-measure =3. This contradiction proves part b) and concludes
the proof of Theorem 5.1.

We can now formulate the main result of this section.

Theorem 5.2. Let (E, i; X') be a Gauss space and denote by m the barycentre of p.
Furthermore, assume that E is a Souslin space and let ¢ be an *R-valued universally
Borel measurable sublinear function on E such that (¢ < + 00)>1 and ¢p(—m)< + 0.

Then

lim = 2logu(p 2 1)=—2llo]3) "

In particular, pu(p <+ o0)=1.

Proof. Choose § >0 arbitrarily. Then there exists a t;>0 such that
~(1+8)-t?2Zlog(1—@ (1)< —(1-9)-t*/2 (5.4)

forallt=t;.

Let us first assume that ||@],>0. By assumption, there exists a tq< +o0
such that u(@ <ty)>0. Now choose aeR so that

49 <1)2 B(w).

Let £>0 be given and note that
{o<to}+eOxc{p<toteloly}

Theorem 3.1 thus implies that
W@ <to+e @)= Plate).

Hence
pezt)S1-d(a +lely’ - (t—to))

for every t=t,. The inequality (5.4) now tells us that
Iim 1 ?logu(ez0< —Q2lel3) ™"

In particular, this shows that u(p <+ oo)=1.
Now let 1>0>0 be as in (5.4) and choose ae Oy, |lajy =1, such that

p@)>(1~-3)lolx.
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To prove Theorem 5.2, under the additional assumption that @, >0, it is
enough to establish the inequality

Jim (2 logu(ezt)= —(1+0) - 2(1-8)* o) ™" (5:3)

To this end it can be assumed that u=p,. In fact, since

pztj2m+{pzi+e(—mj},
we have that plezf=us(p=t+¢(—m)) and the assertion is obvious.

From now on it will thus be assumed that u=py, and we shall prove (5.5).
Therefore define E-valued Gaussian random variables U and V, respectively, by
setting U(x)=a(A"1a)(x), x)=x—U(x), xeE. It follows at once that {-U and
&o V are orthogonal in I? (u) for every ¢eE'. Since E is a Souslin space, we deduce
that U and V are independent based over the probability space (E, #(E), u). By
first using Fubini’s theorem and then Jensen’s inequality, we have

log u(@21)2 [ log u(Ue —v +{921}) V(u)(dv). (5.6)
Furthermore, since ¢ < + oo a.s. [u], it is easy to show that the set

M= {veElp(—v)<+ 0}
is of ¥(u)-measure one.Ifve M, wehavethat {Ue —v+{p=t}} 2 {oU)=t+o(-0)}
n{A~Yaz1s}, where t; is as in (5.4). Hence

{Ue—v+{p2t}}2{A" ae[max ((t +¢(—v))/¢(a), t,), + o[},
which yields

_ 2
t‘zlogy{Ue—v+{¢gt}}g—%(1+5)~[max ((p—zca+%)(5(—al;—),%)] , 1215,

for all ve M. Since M is of V{u)-measure one, we know that

[ (—v) Vw(dv)< +oo.
By dominated convergence, we thus get (5.5) from (5.6) and the definition of a.

One the other hand, if | @ ||, =0, the first part of the proof shows that u(¢ <t,)=1
for a suitable t. The result is thus obvious in this case. This proves Theorem 5.2.

The following theorem is mainly included as an example of an application of
Theorem 5.2. (Compare [9, Th. 2.6].)

Theorem 5.3. Let (B,),» o be the d-dimensional Brownian motion process starting
at the origin, and let A be a g-finite positive Borel measure on R |, .
Set

X=[IB|dA().

Then P(X < + oo)=1 if and only if
[trdi(t)<+ 0.

Furthermore, if this condition is fulfilled it holds
lim =2 log P(X 2t)=—3(f 2*([s, + co[)ds)™?.

Proof. We choose the same representation of (B,),», as in Section 4. The first
part of the theorem follows easily from [4, Th. 4.2] or [5, Th. 6.1]. Using Theorem
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5.2 and suitable parts of the proof of Theorem 4.1, we only have to show that

sup |

fb(s)ds
0

dit)= ;ﬂﬂbz([s, + oo[) ds,
0

where the sumpremum is taken over all be(I2([0. + oo[))’ such that
{1b(s)2ds<1.
0

This follows at once from the Cauchy-Schwarz inequality.

Note Added in Proof. The author is grateful to the referee for pointing out a completely different
proof of Lemma 5.1. It can be assumed that E is a separable Banach space. In fact, assume that ¢ is
an R-valued universally Borel measurable seminorm on E and set E, = {¢ £n}. Since UE,=E, all the
sets E, cannot be a zero Haar set. Therefore, the set E —E, contains a neighbourhood of the
origin for a suitable n. (See Theorem 7.3 in J. P.R. Christensen, Topology and Borel Structure, Mathe-
matics Studies 10, North-Holland 1974). The seminorm ¢ is thus bounded in a neighbourhood of the
origin.
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