
A Summary of Brownian Motion.1

Definition. A standard Brownian motion W = W (t), t ≥ 0, on a probability space (Ω,F ,P)
is a collection of random variables W (ω, t) such that

(1) W (0) = 0;
(2) For every 0 < t1 < · · · tn, the vector

(
W (t1), . . .W (tn)

)
is Gaussian;

(3) EW (t) = 0, E
(
W (t)W (s)

)
= min(t, s), t, s ≥ 0;

(4) For every ω ∈ Ω, the function t 7→ W (ω, t) is continuous.

A standard Brownian motion in Rd, d > 1, is the vector-valued process t 7→ (W1(t), . . . ,Wd(t)),
with independent standard Brownian motions Wk.

Note. If W (0) = 0, then E
(
W (t)W (s)

)
= min(t, s) is equivalent to E|W (t) − W (s)|2 = |t − s|.

Because W is Gaussian, the Kolmogorov continuity criterion implies that W has a continuous
modification (in fact, Hölder continuous of every order less that 1/2). It also follows that W has
independent and stationary increments.

Three constructions of W .

(1) Random walk approximation [Donsker, 1951]: Wh(t), t ≥ 0, is the linear interpolation
of (tn,Wh(tn)), n ≥ 0, with

Wh(tn) = Wh(tn−1) +
√
hξn, Wh(0) = 0, tn = nh, ξn iid N (0, 1).

If ξn = W (tn)−W (tn−1)√
h

, then, for t ∈ [tn−1, tn] we have Wh(t) = W (tn−1) + (t− tn−1)
(
W (tn)−

W (tn−1)
)
/h and so W − Wh is a Brownian bridge on [tn−1, tn] [which, for most practical

purposes, is the same as
√
hB0, where B0 is the Brownian bridge on [0, 1].] As a result, the

process t 7→ W (t) −Wh(t), t ≥ 0, is, in distribution, a collection of independent Brownian
bridges. Then, keeping in mind that B0(t) is Gaussian with mean zero and variance t(1− t),

E
∫ 1

0

|Wh(t)−W (t)| dt =
√
h

∫ 1

0

E|B0(t)| dt =
√

πh

2

∫ 1

0

√
t(1− t) dt =

√
πh

2
B

(
3

2
,
3

2

)
=

√
π

32

√
h.

Similarly,2

lim
h→0+

1√
h| lnh|

E max
0≤t≤1

|Wh(t)−W (t)| = 1√
2
.

(2) Chaos Expansion: If {mk(t), k ≥ 1} is an orthonormal basis in L2((0, T )), then, for
t ∈ [0, T ],

W (t) =
∞∑
k=1

mk(t)ξk, mk(t) =

∫ t

0

mk(s) ds, ξk iid N (0, 1).

The series converges in L2(Ω × [0, T ]) and with probability one for every t. A particular
choice of the basis, such as the Fourier cosine basis or the Haar basis, makes it possible to
establish uniform convergence. The Haar basis also corresponds to the popular bisection
method for constructing W .
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(3) KL (Karhunen-Loève) expansion [around 1945]:

W (t) =

√
2

T

∞∑
n=1

sin(λnt)

λn

ξn, λn =

(
n− 1

2

)
π

T
, ξn iid N (0, 1).

This is a particular case of chaos expansion, with mk(t) =
√
2/T cos(λkt).

“Easy” properties of the Brownian motion.

(1) Scaling: for every c > 0, the process t 7→
√
cW (t/c) is a standard Brownian motion;

(2) Time reversal: the process X(t) = tW (1/t), with X(0) = 0, is a standard Brownian
motion;

(3) Reflection principles:
(a) if τa = inf{t > 0 : W (t) = a}, a 6= 0, then P(τa ≤ t) = 2P

(
W (t) > a

)
= P

(
M(t) > a

)
;

(b) if M(t) = max0≤s≤t W (s), then M −W
L
= |W |;

(c) if τ is a stopping time, then the process t 7→ W (t)1(t ≤ τ) +
(
2W (τ)−W (t)

)
1(t ≥ τ)

is a Brownian motion.

“Highly non-trivial” properties of the Brownian motion.

(1) Continuity of the Brownian filtration: if FW
t = σ(W (s), s ≤ t) and is P-complete

(contains all P-null sets), then FW
t = σ

( ∪
s<t

FW
s

)
:= FW

t− , t > 0 (by continuity of W ), and

FW
t =

∩
s>t

FW
s := FW

t+ , t ≥ 0 (by Blumenthal’s 0− 1 law).

(2) Given a real number C, the process t 7→ C max
0≤s≤t

W (s) − W (t) is NOT Markov except for

three special values of C: C = 0 (obvious), C = 1 (reflection principle), and C = 2 (in this
case, we get the 3-Bessel process, that is, the Euclidean norm of the standard Brownian
motion in R3: J. W. Pitman, One-dimensional Brownian motion and the three-dimensional
Bessel process, Advances in Appl. Probability, Vol. 7, No. 3, pp. 511–526, 1975).

(3) Skorokhod embedding/representation: If X is a square-integrable random variable
with zero mean, then there exists a stopping time τ relative to FW

t such that W (τ) has the
same distribution as X and EX2 = Eτ . In particular, if X only takes two values a and b,
then τ = min{t > 0 : W (t) /∈ [a, b]}.

Sample Path Properties.

(1) Finite quadratic variation: if tk,n = Tk/n, k = 0, . . . , n, n = 1, 2, . . ., then

lim
n→∞

n∑
k=1

|W (tk,n)−W (tk−1,n)|2 = T,

both with probability one and in L2(Ω;P). As a result, with probability one,
limn→∞

∑n
k=1 |W (tk,n)−W (tk−1,n)|p = 0 [p > 2] or +∞ [0 < p < 2].

(2) Hölder continuity: With probability one, sample paths of W are Hölder continuous of
any order less that 1/2; with probability zero, sample paths of W are Hölder continuous of
any order bigger that 1/2;

(3) The Law of Iterated Logarithm: with probability one, as t → 0+ or t → +∞, the

set of limit points, of W (t)/
√

2t| ln | ln t|| is [−1, 1];



3

(4) Modulus of continuity: with probability one,

lim sup
h→0+

sup
0<|t−s|<h

|W (t)−W (s)|√
2h| lnh|

= 1.

(5) At individual points in time:
• almost all (with respect to the Lebesgue measure) points t > 0 are regular

(ordinary): with probability one,

lim sup
h→0

|W (t+ h)−W (t)|√
2h| ln | ln |h|||

= 1;

• Some points t > 0 are rapid: with probability one,

lim sup
h→0

|W (t+ h)−W (t)|√
h| ln |h||

> 0;

• Some other points t > 0 are slow: with probability one,

lim sup
h→0

|W (t+ h)−W (t)|√
|h|

< ∞;

(6) Square root laws: While existence of rapid points is suggested by the modulus of
continuity, existence of slow points is somewhat less obvious and leads to further discoveries.
For example, for c > 0, define the (random) set

Tc =

{
t ∈ [0, 1] : lim sup

h→0

|W (t+ h)−W (t)|√
|h|

≤ c

}
.

For “small” c, we would expect the set Tc to be empty. Indeed, Dvoretsky (1963) showed
that P(Tc = ∅) = 1 if c < 1/4; Burgers Davis (1983) improved it to c < 1.

Deeper into stochastic analysis.

(1) (Strong) Markov Property: W has it, relative to FW
t , because the increments are

independent;
(2) Martingale Property: W is a square integrable martingale relative to FW

t , with
〈W 〉(t) = t [that is, W 2(t)− t is a martingale], again because of independent increments;

(3) Lévy characterization of the Brownian motion (1948): A Wiener process,
that is, a continuous, square-integrable martingale V = V (t) on a stochastic basis
(Ω,F , (Ft)t≥0,P) satisfying the usual assumptions, with 〈V 〉(t) = t, is a Brownian motion.

(4) Random time change/Dambis-Dubinis-Schwarz theorem (1965): If N = N(t) is a
continuous (local) martingale, with limt→∞〈N〉(t) = +∞, and, for u ≥ 0, τ(u) = inf{t > 0 :
〈N〉(t) = u}, then V (u) = N(τ(u)) is a standard Brownian motion, adapted to Fτ(u), and

N(t) = V
(
〈N〉(t)

)
.

(5) The filtration CAN make a difference: if W is a standard Brownian motion and

V (t) = W (t)−
∫ t

0

W (u)

u
du,

then V is a standard Brownian motion [V is (obviously) Gaussian, and, by direct computa-
tion, EV (t) = 0 and E|V (t) − V (s)|2 = |t − s|], and is therefore V a martingale relative to
its own filtration FV

t , but V is not a martingale relative to FW
t . Indeed, if t > s > 0, then

E
(
V (t)|FW

s

)
= W (s)−

∫ s

0

W (u)

u
du−

∫ t

s

W (s)

u
du = V (s)−W (s) ln(t/s).
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In other words, FV
t & FW

t (strict inclusion).
(6) Markov, not Strong Markov: this is only possible in continuous time. Define the

function f : R → R2 by

f(x) =


(x, 0), x < 0;

(sinx, 1− cosx), 0 ≤ x ≤ 2π;

(x− 2π, 0), x > 2π.

The curve x 7→ f(x) is the x-axis together with the unit circle centered at (0, 1). IfW = W (t)
is a standard Brownian motion, then the process X(t) = f

(
W (t)+π

)
is Markov [the inverse

f−1 exists everywhere except for (0, 0), so, with probability one, W (t) = f−1(X(t)) − π.]
On the other hand, we cannot “restart” X at the stopping time τ = inf{t > 0 : |W (t)| > π}
because the behavior of X(t), t > τ , will depend on whether W (τ) = π or W (τ) = −π.

A time line.

(1) 1827: the random motion of pollen in water observed, through a microscope, by the English
botanist Robert Brown (1773–1858), who started his career by dropping out of medical
school and enlisting in the Royal Navy.

(2) 1905: the physical theory based on random walk and the heat equation is developed by
Albert Einstein (1879–1955), who, at the same time, also developed special relativity.

(3) 1906: the same physical theory is developed, independently, by the Polish physicistMarian
Smoluchowski (1872–1917), who, in his spare time, was doing skiing, mountain climbing,
watercolor painting, and piano playing.

(4) 1923: the mathematical construction, as a measure on the space of continuous functions,
was presented by Norbert Wiener (1894–1964), whose father was related to Maimonides.

(5) 1933: axiomatic (measure-theoretic) approach to probability is developed by the Soviet
mathematician Andrey Nikolaevich Kolmogorov (1903–1987), who started as a his-
tory major, but quickly switched to mathematics.

(6) 1945: the stochastic calculus is developed by the Japanese mathematician Kiyosi Itô,
who was writing his papers not only in Japanese, but also in Chinese, English, French, and
German.

(7) 1948: the book Processus Stochastiques et Mouvement Brownien is published by the French
mathematician Paul Lévy (1886–1971), who earlier (1934) introduced the concept of mar-
tingale as a stochastic process, and whose son-in-law was Laurent Schwartz,

(8) 1945–1950: extensive computations with the Wiener process/Bronwian motion are carried
out by American mathematicians William Ted Martin (1911–2004), who chaired the
math department at MIT from 1947 to 1968, and Robert Horton Cameron (1908–
1989), who supervised 35 Ph.D. students during his 30+ years at the University of Minnesota,
including M. Donsker.

(9) 1951: the mathematical justification of the Einstein-Smoluchowski construction, in the form
of the functional central limit theorem/invariance principle, is provided by the American
mathematician Monroe Donsker (1924–1991), who also served as Chair of the Board of
Foreign Scholarships in the Ford and Carter administrations.


