
Abstract Wiener Space1

Starting point:2

• A sufficiently rich probability space F = (Ω,F ,P);
• A locally convex linear (over R) topological space X with (topological) dual X∗;
• A random element X on F with values in X such that, for every f ∈ X∗, the random variable
f(X) is Gaussian with mean zero;

• The measure µ on (X,B(X)) defined by µ(A) = P(X ∈ A) and the corresponding Hilbert
space L2(X, µ).

Basic constructions.

(1) Covariance operator K of X is a continuous linear mapping from X∗ to X: for f, g ∈ X∗,

E
(
f(X)g(X)

)
= f

(
K(g)

)
= g
(
K(f)

)
.

(2) The canonical embedding operator ı∗ of X∗ into L2(X, µ): if f ∈ X∗, then f ∈ L2(X, µ),
because ∫

X
|f(x)|2 µ(dx) = E|f(X)|2 < ∞.

(3) The Hilbert space X∗
µ of measurable linear functionals is the closure of the image ı∗(X∗)

in L2(X, µ); this space is identified with its (topological) dual by the Riesz representation
theorem. If g ∈ X∗

µ, then g(X) is defined and is a zero-mean Gaussian random variable
(being a mean-square limit of zero-mean Gaussian random variables).

(4) The dual operator ı : X∗
µ → X for the operator ı∗ : X∗ 7→ X∗

µ:

f
(
ı(g)

)
= E

(
f(X)g(X)

)
≡
(
ı∗f, g

)
X∗
µ
.

(5) The Cameron-Martin space Hµ = ı(X∗
µ), which is a separable Hilbert space with inner

product (
x, y
)
Hµ

=
(
ı−1(x), ı−1(y)

)
L2(X,µ)

≡ E
(
(ı−1(x))(X)(ı−1(y))(X)

)
, (1.1)

and is compactly embedded into X.
As a result,

K = ıı∗, K(X∗) ⊂ Hµ ⊂ X,
and Hµ is a reproducing kernel Hilbert space with kernel

K(f, g) = E
(
f(X)g(X)

)
, f, g ∈ X∗.

In the above setting, the abstract Wiener space is the triple (X, Hµ, µ). In the original con-
struction of Leonard Gross3 (around 1965), the starting point is the triple, in which X is separable
Banach space and Hµ is a separable Hilbert space that is densely and continuously embedded into
X; the key point is existence of the corresponding measure µ.

The main example is X = C((0, T )), the space of continuous functions on [0, T ], and X = W , a
standard Brownian motion. Then Hµ = {f ∈ H1((0, T )) : f(0) = 0}, where

H1((0, T )) = {f : f(t) = f(0) +

∫ t

0

f ′(s) ds,

∫ T

0

|f ′(s)|2 ds < ∞.}

The abstract Cameron-Martin theorem becomes as follows: given a non-random x ∈ X, the
distribution µ of X and the distribution µx of X + x [defined by µx(A) = P(X + x ∈ A)] are
mutually absolutely continuous if and only if x ∈ Hµ, and in that case,

dµx

dµ
(y) = exp

((
ı−1(x)

)
(y)−

‖x‖2Hµ

2

)
, y ∈ X. (1.2)

1Sergey Lototsky, USC
2Some stretch of imagination might be necessary to resolve potential questions about existence.
3b. 1931, Professor Emeritus at Cornell
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Otherwise, the distributions are mutually singular [supported on disjoint sets].

Two related results.
Theorem. [J. Hájek (1958), J. Feldman (1958)] Two Gaussian measures on a locally convex

linear topological are either equivalent or singular.

Theorem. [S. Kakutani (1948)] Two infinite product measures are equivalent if and only if the
series ∑

k≥1

ln

∫ √
dνk
dµk

dµk (1.3)

converges.

The Gaussian product measure on a separable Hilbert space.4

Let X be a separable Hilbert space with inner product (·, ·), norm ‖ · ‖, and an orthonormal basis
{φk, k ≥ 1}, and let X be a Gaussian random element with values in X: X =

∑
k qkξkφk where

ξk, k ≥ 1, are iid N (0, 1), qk > 0, and
∑

k q
2
k < ∞:

E‖X‖2 =
∑
k

q2k.

Then

(1) X∗ = X;
(2) The operator K is positive and symmetric, with ı = ı∗ = K1/2:

K(f) =
∑
k

q2kfkφk, fk = (f, φk);

(3) The distribution µ of X in H is a product measure of N (0, q2k);
(4) For x ∈ X, the distribution ν = µx of X + x is the product measure of N (xk, q

2
k) so that

dνk
dµk

(t) = exp

(
2txk − x2

k

2q2k

)
, t ∈ R. (1.4)

With ζk ∼ N (0, q2k),∫ √
dνk
dµk

dµk = e−x2
k/(4q

2
k)Eeζkxk/(2q

2
k) = e−x2

k/(8q
2
k), (1.5)

and (1.3) becomes ∑
k

q−2
k x2

k < ∞. (1.6)

(5) The abstract construction leads to the Cameron-Martin space

Hµ = K1/2(X) = {f ∈ X :
∑
k

q−2
k f 2

k < ∞},

which is consistent with (1.6).
(6) Equality (1.4) is consistent with (1.2): just as in (1.5), we write yk = t/qk to get∏

k

dνk
dµk

(yk) = exp

(
(K−1/2x, y)− 1

2
‖K−1/2x‖2

)
.

4Sometimes referred to as the “trivial example”.


