Abstract Wiener Space!
Starting point:?

e A sufficiently rich probability space § = (2, F,P);

e A locally convex linear (over R) topological space X with (topological) dual X*;

e A random element X on § with values in X such that, for every f € X*, the random variable
f(X) is Gaussian with mean zero;

e The measure p on (X, B(X)) defined by pu(A) = P(X € A) and the corresponding Hilbert
space Lo(X, ).

Basic constructions.

(1) Covariance operator K of X is a continuous linear mapping from X* to X: for f,g € X*,

E(f(X)g(X)) = f(K(9)) = 9(K(f))-
(2) The canonical embedding operator 2" of X* into Lyo(X, p): if f € X*, then f € Lo(X, ),
because
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(3) The Hilbert space Xy of measurable linear functionals isthe closure of the image +*(X*)
in Ly(X, p); this space is identified with its (topological) dual by the Riesz representation
theorem. If g € X7, then g(X) is defined and is a zero-mean Gaussian random variable
(being a mean-square limit of zero-mean Gaussian random variables).

(4) The dual operator 2 : X} — X for the operator 2* : X* — X7:

f(2l9) =B(/(X)g(X)) = (v [, 9)s,

(5) The Cameron-Martin space H, = #(X}), which is a separable Hilbert space with inner
product

(2.9) = (7 @) 0 7 ) i = E( @)X (0))(X)), (L1)
and is compactly embedded into X.
As a result,
K=u", KX')CH,CX,

and H, is a reproducing kernel Hilbert space with kernel
K(f,9) =E(f(X)g(X)), f,g €X".

In the above setting, the abstract Wiener space is the triple (X, H,, ;). In the original con-
struction of LEONARD GROSS? (around 1965), the starting point is the triple, in which X is separable
Banach space and H, is a separable Hilbert space that is densely and continuously embedded into
X; the key point is ezistence of the corresponding measure pu.

The main example is X = C((0, 7)), the space of continuous functions on [0,7], and X = W, a
standard Brownian motion. Then H,, = {f € H,((0,7')) : f(0) = 0}, where

H((0,7)) = {f : £(¢) /f @h/|ww@<w}

The abstract Cameron-Martin theorem becomes as follows: given a non-random z € X, the
distribution p of X and the distribution p, of X + x [defined by p,(A) = P(X + x € A)] are
mutually absolutely continuous if and only if € H,, and in that case,
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1Sergey Lototsky, USC
2Some stretch of imagination might be necessary to resolve potential questions about existence.
3b. 1931, Professor Emeritus at Cornell
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Otherwise, the distributions are mutually singular [supported on disjoint sets].
Two related results.
Theorem. [J. Hajek (1958), J. Feldman (1958)] Two Gaussian measures on a locally convex

linear topological are either equivalent or singular.

Theorem. [S. Kakutani (1948)] Two infinite product measures are equivalent if and only if the

series
dv
Zln/“d—kduk (1.3)
k>1 M
converges.
The Gaussian product measure on a separable Hilbert space.?
Let X be a separable Hilbert space with inner product (-, ), norm || - ||, and an orthonormal basis

{¢r, k > 1}, and let X be a Gaussian random element with values in X: X = >, qx&ppr where
&, k> 1, are iid N'(0,1), gy > 0, and Y, ¢} < oo:

E|X|*=) g
k

Then
(1) X* =X,
(2) The operator K is positive and symmetric, with + = 2* = K'/%

= afeor.  fo="(f on);
!

(3) The distribution p of X in H is a product measure of N'(0,¢3});
(4) For z € X, the distribution v = u, of X + z is the product measure of N (zy,¢:) so that

d o, — 12
P (_) feR. (1.4)

Qk
/ ;ZVk duy = e~ i/ () R eShon/ (247) — e*xk/(sqk) (1.5)
\/ m

and (1.3) becomes

With ¢z ~ N(0

qu_zxi < 0. (1.6)
k
(5) The abstract construction leads to the Cameron-Martin space
Hy =K'"2(X) = {f € X: ) q.*fi < oo},
k

which is consistent with (1.6).
(6) Equality (1.4) is consistent with (1.2): just as in (1.5), we write yx = t/qx to get

dv, _ I
LT o0 = exp (0772 = ).
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4Sometimes referred to as the “trivial example”.



