Abstract Wiener Space¹

Starting point:²

- A sufficiently rich probability space $\mathfrak{F} = (\Omega, \mathcal{F}, \mathbb{P});$
- *•* A locally convex linear (over R) topological space X with (topological) dual X *∗* ;
- A random element *X* on \mathfrak{F} with values in X such that, for every $f \in \mathbb{X}^*$, the random variable $f(\boldsymbol{X})$ is Gaussian with mean zero;
- The measure μ on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ defined by $\mu(A) = \mathbb{P}(\mathbf{X} \in A)$ and the corresponding Hilbert space $L_2(\mathbb{X}, \mu)$.

Basic constructions.

(1) Covariance operator **K** of **X** is a continuous linear mapping from \mathbb{X}^* to \mathbb{X} : for $f, g \in \mathbb{X}^*$,

$$
\mathbb{E}(f(\mathbf{X})g(\mathbf{X})) = f(\mathbf{K}(g)) = g(\mathbf{K}(f)).
$$

(2) The canonical embedding operator \mathbf{i}^* of \mathbb{X}^* into $L_2(\mathbb{X}, \mu)$: if $f \in \mathbb{X}^*$, then $f \in L_2(\mathbb{X}, \mu)$, because

$$
\int_{\mathbb{X}} |f(x)|^2 \,\mu(dx) = \mathbb{E}|f(\boldsymbol{X})|^2 < \infty.
$$

- (3) The Hilbert space \mathbb{X}_{μ}^{*} of measurable linear functionals is the closure of the image $\iota^{*}(\mathbb{X}^{*})$ in $L_2(\mathbb{X}, \mu)$; this space is identified with its (topological) dual by the Riesz representation theorem. If $g \in \mathbb{X}_{\mu}^*$, then $g(X)$ is defined and is a zero-mean Gaussian random variable (being a mean-square limit of zero-mean Gaussian random variables).
- (4) The dual operator $\mathbf{z}: \mathbb{X}_{\mu}^* \to \mathbb{X}$ for the operator $\mathbf{z}^*: \mathbb{X}^* \mapsto \mathbb{X}_{\mu}^*$:

$$
f(\boldsymbol{\imath}(g)) = \mathbb{E}\big(f(\boldsymbol{X})g(\boldsymbol{X})\big) \equiv \big(\boldsymbol{\imath}^*f, g\big)_{\mathbb{X}_{\mu}^*}.
$$

(5) The Cameron-Martin space $H_{\mu} = \iota(\mathbb{X}_{\mu}^{*})$, which is a separable Hilbert space with inner product

$$
(x,y)_{H_{\mu}} = (\iota^{-1}(x), \iota^{-1}(y))_{L_2(\mathbb{X},\mu)} \equiv \mathbb{E}((\iota^{-1}(x))(\boldsymbol{X})(\iota^{-1}(y))(\boldsymbol{X})), \tag{1.1}
$$

and is compactly embedded into X.

As a result,

$$
\mathbf{K} = \mathbf{u}^*, \quad \mathbf{K}(\mathbb{X}^*) \subset H_\mu \subset \mathbb{X},
$$

and H_μ is a *reproducing kernel Hilbert space* with kernel

$$
K(f,g) = \mathbb{E}\big(f(\mathbf{X})g(\mathbf{X})\big), \ f,g \in \mathbb{X}^*.
$$

In the above setting, the abstract Wiener space is the triple (\mathbb{X}, H_u, μ) . In the original construction of LEONARD GROSS³ (around 1965), the *starting point* is the triple, in which X is separable Banach space and H_μ is a separable Hilbert space that is densely and continuously embedded into X ; the key point is *existence* of the corresponding measure μ .

The main example is $X = \mathcal{C}((0,T))$, the space of continuous functions on [0, T], and $\mathbf{X} = W$, a standard Brownian motion. Then $H_{\mu} = \{f \in H_1((0,T)) : f(0) = 0\}$, where

$$
H_1((0,T)) = \{f : f(t) = f(0) + \int_0^t f'(s) \, ds, \int_0^T |f'(s)|^2 \, ds < \infty.\}
$$

The *abstract* **Cameron-Martin theorem** becomes as follows: given a non-random $x \in \mathbb{X}$, the distribution μ of **X** and the distribution μ_x of $\mathbf{X} + x$ [defined by $\mu_x(A) = \mathbb{P}(\mathbf{X} + x \in A)$] are mutually absolutely continuous if and only if $x \in H_\mu$, and in that case,

$$
\frac{d\mu_x}{d\mu}(y) = \exp\left((\iota^{-1}(x))(y) - \frac{\|x\|_{H_\mu}^2}{2}\right), \ y \in \mathbb{X}.\tag{1.2}
$$

¹Sergey Lototsky, USC

²Some stretch of imagination might be necessary to resolve potential questions about existence.

³b. 1931, Professor Emeritus at Cornell

2

Otherwise, the distributions are mutually singular [supported on disjoint sets].

Two related results.

Theorem. [J. Hájek (1958), J. Feldman (1958)] Two Gaussian measures on a locally convex linear topological are either equivalent or singular.

Theorem. [S. Kakutani (1948)] Two infinite product measures are equivalent if and only if the series

$$
\sum_{k\geq 1} \ln \int \sqrt{\frac{d\nu_k}{d\mu_k}} \, d\mu_k \tag{1.3}
$$

converges.

The Gaussian product measure on a separable Hilbert space.⁴

Let X be a separable Hilbert space with inner product (\cdot, \cdot) , norm $\|\cdot\|$, and an orthonormal basis $\{\varphi_k, k \geq 1\}$, and let *X* be a Gaussian random element with values in X: $X = \sum_k q_k \xi_k \varphi_k$ where *ξ*_{*k*}, *k* ≥ 1, are iid $N(0, 1)$, $q_k > 0$, and $\sum_k q_k^2 < \infty$:

$$
\mathbb{E}||\boldsymbol{X}||^2 = \sum_k q_k^2.
$$

Then

- (1) $\mathbb{X}^* = \mathbb{X};$
- (2) The operator **K** is positive and symmetric, with $\mathbf{z} = \mathbf{z}^* = \mathbf{K}^{1/2}$.

$$
\mathbf{K}(f) = \sum_{k} q_k^2 f_k \varphi_k, \quad f_k = (f, \varphi_k);
$$

- (3) The distribution μ of **X** in *H* is a product measure of $\mathcal{N}(0, q_k^2)$;
- (4) For $x \in \mathbb{X}$, the distribution $\nu = \mu_x$ of $\mathbf{X} + x$ is the product measure of $\mathcal{N}(x_k, q_k^2)$ so that

$$
\frac{d\nu_k}{d\mu_k}(t) = \exp\left(\frac{2tx_k - x_k^2}{2q_k^2}\right), \quad t \in \mathbb{R}.\tag{1.4}
$$

With $\zeta_k \sim \mathcal{N}(0, q_k^2)$,

$$
\int \sqrt{\frac{d\nu_k}{d\mu_k}} \, d\mu_k = e^{-x_k^2/(4q_k^2)} \mathbb{E} e^{\zeta_k x_k/(2q_k^2)} = e^{-x_k^2/(8q_k^2)},\tag{1.5}
$$

and (1.3) becomes

$$
\sum_{k} q_k^{-2} x_k^2 < \infty. \tag{1.6}
$$

(5) The abstract construction leads to the Cameron-Martin space

$$
H_{\mu} = \mathbf{K}^{1/2}(\mathbb{X}) = \{ f \in \mathbb{X} : \sum_{k} q_k^{-2} f_k^2 < \infty \},
$$

which is consistent with (1.6) .

(6) Equality (1.4) is consistent with (1.2): just as in (1.5), we write $y_k = t/q_k$ to get

$$
\prod_{k} \frac{d\nu_k}{d\mu_k}(y_k) = \exp\left((\mathbf{K}^{-1/2}x, y) - \frac{1}{2} \|\mathbf{K}^{-1/2}x\|^2\right).
$$

⁴Sometimes referred to as the "trivial example".