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Abstract

A new nonlinear filtering algorithm is proposed for the model where the
state is a randomly perturbed nonlinear dynamical system and the measure-
ments are made at discrete time moments in Gaussian noise. It is shown that
the approximate scheme based on the algorithm converges to the optimal fil-
ter and the error of the approximation is computed. The algorithm makes it
possible to shift off line the most time consuming operations related to solving
the Fokker-Planck equations and computing the integrals with respect to the
filtering density.

Key words: Diffusion processes, Fokker-Planck equation, Nonlinear filtering,
Real time.

1 Introduction

In the continuous-discrete time filtering model, an unobserved continuous time state
process is estimated from the noisy measurements made at discrete time moments.
This model seems of special interest from the point of view of applications, because
many real life processes evolve in continuous time while the digital devices used to
process the measurements require discrete time data. The case of continuous time
observations was studied in [1, 2], see also [3].

The desired solution of the filtering problem is an algorithm that provides the best
mean square estimate of the given functional of the state process in the form suitable
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for on-line implementation. In the linear case, such a solution is given by the Kalman
filter [4, 5].

It is worth mentioning that the exact solution of the continuous-discrete time
filtering problem is known for a wide class of nonlinear models [6, 4]. Specifically,
let X = (X(t))t≥0 be the state process and assume that the measurements z(k) are
made at moments tk. If f = f(x) is a function such that E|f(X(t))|2 < ∞ for all
t ≥ 0, then the best mean square estimate f̂(k) of f(X(tk)) given the observations
zi, i ≤ k can be written as

f̂(k) =

∫
pk(x)f(x)dx∫
pk(x)dx

. (1.1)

The function pk(x), called the unnormalized filtering density (UFD), satisfies a re-
cursive equation of the predictor-corrector type: in between the measurements, pk(x)
evolves according to the Fokker-Planck equation corresponding to the state process
(prediction), and after each observation the value of pk is updated using the condi-
tional distribution of the measurements given the state process (correction). This
procedure provides an algorithm for computing the filtering density (both unnormal-
ized and normalized) and the optimal filter f̂(k).1 Unfortunately, the implementation
of this optimal algorithm is practically impossible when the dimension of the state
process is greater than three. One reason is that on each step of the algorithm it is
necessary to solve the Fokker-Planck equation. Even though the parameters (coeffi-
cients) of the equation might be known a priori, the solution cannot be obtained in
advance because the initial condition depends on the previous measurements. On-
line solution of such an equation can require too much time. Another reason is that
on-line computations of the integrals in (1.1) even for simple functions f may be very
time consuming if the dimension of the state process is large. These computations
alone can rule out the on-line application of the algorithm.

On-line solution of the Fokker-Planck equation can be avoided if the UFD admits a
finite dimensional sufficient statistics; in particular, this is the case when the model is
linear Gaussian. The first nonlinear example of this sort was discovered by Beneš [7],
and a more general class of UFD admitting finite dimensional sufficient statistics was
studied by Daum [8]. Unfortunately, for a given nonlinear model, it is usually not
clear whether the sufficient statistics exists. The practical algorithms based on this
approach use approximations similar to the extended Kalman filter [9], so as a rule
the error of such approximations is unknown.

The objective of the current work is to develop a recursive numerical algorithm
for computing f̂(k) in which the on-line part is as simple as possible; in particular,
no differential equations are to be solved on-line. The starting point in the derivation
is the equation satisfied by pk(x) in the general nonlinear model, and the approach is
based on the technique known as the parameterization of the unnormalized filtering
density [4].

1If the opbjective is an estimate of X(tk), then the maximum likelihood estimates (MLEs) some-
times provide better results than the conditional mean, e.g. when the filtering density is multimodal.
Note that, for computing the MLE, the UFD is sufficient since it attains its maxima at the same
points as the normalized density.
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In the proposed algorithm (Section 3) both time consuming operations of solving
the Fokker-Planck equation and computing the integrals are performed off line, which
makes the algorithm suitable for on-line implementation. Since the result is only an
approximation of the optimal filter, the error of the approximation is computed.

2 The Filtering Problem

Consider the problem of estimating an IRd-valued state process X = X(t) that evolves
in continuous time according to the following Ito stochastic differential equation

dX(t) = b(X(t))dt+ σ(X(t))dW (t), 0 ≤ t ≤ t0, X(0) = x0 (2.1)

given IRr-valued measurements z = z(k) made at discrete time moments tk = k∆, k ≥
1:

z(k) = h(X(tk)) + v(k). (2.2)

In the above,W = (W (t))t≥0 is an IRd1-valued standard Brownian motion indepen-
dent of the initial condition x0; functions b = b(x), σ = σ(x), and h = h(x), x ∈ IRd,
take values in IRd, IRd×d1 , and IRr respectively; the sequence {v(k)}k≥1 is indepen-
dent of the state process and consists of i.i.d. Gaussian random vectors with zero
mean and covariance Ev(k)v(k)T = (1/∆)I, I ∈ IRr×r is the identity matrix. The
underlying probability space (Ω,F ,P) is assumed to be fixed.

The following regularity assumptions are made about the model (2.1), (2.2):

1. the functions b, σ, and h are infinitely differentiable and bounded, and all their
derivatives are also bounded;

2. the random vector x0 has a density p = p(x), x ∈ IRd, so that the function p is
infinitely differentiable and, together with all its derivatives, decays at infinity
faster than any power of |x| (in other words, the density function p is an element
of the Schwartz space S(IRd) of rapidly decreasing functions).

Among the density functions satisfying the second assumption are the mixtures of

the normal distributions and the function p(x) = A exp
(
−B

√
1 + |x− x0|2

)
, B > 0,

A- normalizing constant.
The nonlinear filtering model with unbounded coefficients is traditionally treated

separately becuse it requires different and more complicated technical tools. For many
practical purposes, though, the algorithm described in this note can be used even if
the coefficients are not bounded because the actual computations are carried out in
a bounded domain (see Section 5).

Let f = f(x), x ∈ IRd, be a measurable scalar function such that E|f(X(t))|2 <∞
for all t ≥ 0. Then the filtering problem for (2.1), (2.2) can be stated as follows:
find the best mean square estimate of f(X(tk)) given the measurements z(m), m =
1, . . . , k. This estimate is called the optimal filter and will be denoted by f̂(k). For
computational purposes, the optimal filter f̂(k) can be characterized as follows.

3



Denote by Tt the solution operator for the Fokker-Planck equation corresponding
to the state process; in other words, u(t, x) = Ttϕ(x) is the solution of the equation

∂u(t, x)

∂t
=

1

2

d∑
i,j=1

∂2

∂xi∂xj

 d1∑
l=1

σil(x)σjl(x)u(t, x)

− d∑
i=1

∂

∂xi

(bi(x)u(t, x)), t>0,

u(0, x) = ϕ(x).
(2.3)

Next, define the sequence pk(x), x ∈ IRd, k ≥ 0, by

p0(x) = p(x),

pk(x) = exp

(
∆

r∑
l=1

hl(x)zl(k)−
∆

2

r∑
l=1

h2
l (x)

)
T∆pk−1(x).

(2.4)

Then the optimal filter f̂(k) can be written as follows [4]:

f̂(k) =

∫
IRd pk(x)f(x)dx∫

IRd pk(x)dx
. (2.5)

The numerator in (2.5) will be denoted by φk[f ]. With this notation, (2.5) becomes

f̂(k) =
φk[f ]

φk[1]
.

3 The Algorithm

Assume that the function f satisfies the following growth condition:

|f(x)| ≤ Cf (1 + |x|α), x ∈ IRd, (3.1)

for some α, Cf > 0. Then E|f(X(t))|2 <∞ for all t ≥ 0 [5, Theorem 4.6].
The objective is to construct a recursive algorithm for computing an approxima-

tion of f̂(k). The algorithm uses parameterization of pk(x) [4] as discussed in the
Introduction. The derivation of the algorithm is given in Section 4.

To parameterize the function pk, an orthonormal basis is introduced in L2(IR
d) as

follows. Let

en(t) =
1√

2nπ1/2n!
e−t2/2Hn(t),

where

Hn(t) = (−1)net2 d
n

dtn
e−t2 , n ≥ 0, (3.2)

is the n-th Hermite polynomial. Let J be the collection of d-dimensional multi-indices.
For l = (l1, . . . , ld) ∈ J define

el(x1, . . . , xd) =
d∏

i=1

eli(xi). (3.3)
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Then the set {el}l∈J is an orthonormal basis in L2(IR
d) [10].

For i, j = 1, . . . , r and l, n ∈ J define the numbers

qln =
∫

IRd
el(x)T∆en(x)dx, qi

ln =
∫

IRd
hi(x)el(x)T∆en(x)dx,

qij
ln =

∫
IRd
hj(x)hi(x)el(x)T∆en(x)dx, fl =

∫
IRd
f(x)el(x)dx, ψl(0) =

∫
IRd
p(x)el(x)dx.

(3.4)
The growth condition (3.1) and the regularity assumptions from Section 2 imply that
the above integrals are well defined.

Fix an integer κ > 0. For l ∈ J we say that l ≤ κ if
∑d

i=1 li ≤ κ. The following is
a recursive algorithm for computing an approximation to pk(x) and φk[f ].

1. Off line (before the measurements are available):
— for i, j = 1, . . . , r and l, n ≤ κ, compute qln, q

i
ln, q

ij
ln, fl, and ψl(0);

— set p̄0(x) =
∑

l≤κ ψl(0)el(x) and φ̄0[f ] =
∑

l≤κ ψl(0)fl.
2. On line, k-th step (as the measurements become available): compute

ψl(k) =
∑
n≤κ

Qln(z(k))ψn(k − 1), (3.5)

l ≤ κ, where

Qln(z(k)) = qln+∆
r∑

i=1

zi(k)q
i
ln+∆2

r∑
i6=j=1

zi(k)zj(k)q
ij
ln+

∆

2

r∑
i=1

(
z2

i (k)∆− 1
)
qii
ln,

then compute
p̄k(x) =

∑
l≤κ

ψl(k)el(x), (3.6)

φ̄k[f ] =
∑
l≤κ

ψl(k)fl, (3.7)

and

f̄k =
φ̄k[f ]

φ̄k[1]
.

We would like to remark the following features of the algorithm:

(1) The time consuming operations of solving the partial differential equation (2.3)
and computing integrals are performed off line;

(2) The overall amount of the off-line computations does not depend on the number
of the on-line time steps;

(3) Formula (3.7) can be used to compute an approximation to f̂(k) (e.g. conditional
moments) without the computations of p̄k(x) and the related integrals;

(4) Only the Fourier coefficients ψl must be computed at every time step while the
approximate filter f̄k and UFD p̄k(x) can be computed as needed, e.g. at the
final time moment.
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(5) The on-line part of the algorithm can be easily parallelized.

The convergence of the algorithm is established in the following theorem.

Theorem 3.1 Suppose that t0 = M∆ is fixed. If the regularity assumptions hold,
then for every M > 0 there exist positive constants Ap, Bp, and Cp so that

max
1≤k≤M

E‖pk − p̄k‖L2(IRd) ≤ Ap∆ +
Bp√
∆

exp
(
−Cp(lnκ)

2
)
. (3.8)

If in addition the function f satisfies (3.1) , then for every M > 0 there are positive
constants Aφ(Cf , α), Bφ(Cf , α) and Cφ(α) so that

max
1≤k≤M

E|φk[f ]− φ̄k[f ]| ≤ Aφ(Cf , α)∆ +
Bφ(Cf , α)√

∆
exp

(
−Cφ(α)(lnκ)2

)
. (3.9)

All constants in the above inequalities also depend on t0 and the parameters of the
model.

This theorem is proved in Appendix. The result implies that in the limit
lim∆→0 limκ→∞ both approximations converge in the mean.

Remark 1. In the limit κ→∞, the order of the approximations (3.6) and (3.7)
is ∆. On the other hand, if (2.2) is considered as an approximation of continuous
time observations, then the order of the approximation is also ∆, which means that
higher order approximations of pk(x) might be unnecessary.

Remark 2. Inequalities (3.8) or (3.9) imply that if the approximation error is to
be made less than ε, then the asymptotic (as ε→ 0) dependence of κ on ε is given by

lnκ �
√

ln 1/ε. The results of numerical simulations indicate that for a sufficiently
regular model the value κ = 10 provides a good approximation of the filtering density.

The number of on-line operations per step in the proposed algorithm is K1 =
N2

κ(2r2 + 2r + 1) flops, where Nκ = (κ + d)!/(κ! d!) is the number of multi-indices
l = (l1, . . . , ld) with

∑d
i=1 li ≤ κ. If κ = 10, r = 1, and d = 6, then K1 ≈ 3 · 108. For

comparison, the same number for the algorithm (2.4)–(2.5) is K2 = CN1+1/d
s , where

Ns is the total number of points in the spatial domain and the constant C > 1.2 If
Ns = 506 and d = 6 (i.e. 50 points are taken in each direction), then K2 > 4 · 1013.
Due to this reduction in the number of the on-line operations and the possibility
of an easy parallelization of the on-line computations, we believe that the proposed
algorithm can be used in real time.

2We assume that a realistic algorithm to solve the general Fokker-Plank equation is the con-
jugate gradient method without pre-conditioning requiring O(N1+1/d

s ) operations [11]; exponential
functions and integrals can be computed in O(Ns) flops.
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4 Derivation of the Algorithm

It follows from (2.4) and the Taylor formula that

pk(x) ≈
(∏r

i=1

(
1 + ∆·hi(x)zi(k) + ∆

2
h2

i (x)(z
2
i (k)∆− 1)

))
T∆pk−1(x)

≈
(
1+∆

∑r
i=1 hi(x)zi(k) + ∆

2

∑r
i=1 h

2
i (x)

(
z2

i (k)∆− 1
)

+∆2∑r
i6=j=1 hi(x)hj(x)zi(k)zj(k)

)
T∆pk−1(x) := Φk(x)T∆pk−1(x).

Define p̃k(x) by

p̃0(x) = p(x), p̃k(x) = Φk(x)T∆p̃k−1(x), k ≥ 1. (4.1)

Then max
1≤k≤M

E‖pk − p̃k‖L2(IRd) ≤ C∆ (proved in the Appendix).

Next, write p̃k(x) =
∑

l∈J ψ̃l(k)el(x). Substitution in (4.1) yields∑
l∈J

ψ̃l(k + 1)el(x) =
∑
l∈J

Φk+1(x)T∆el(x)ψ̃l(k)

or
ψ̃l(k + 1) =

∑
n∈J

( ∫
IRd
el(x)Φk+1(x)T∆en(x)dx

)
ψ̃n(k).

After that, define ψl(k), l ≤ κ, by

ψl(0) =
∫

IRd
p(x)el(x)dx,

ψl(k) =
∑
n≤κ

( ∫
IRd
el(x)Φk(x)T∆en(x)dx

)
ψn(k − 1).

and set p̄k(x) =
∑

l≤κ ψl(k)el(x). Then {ψl(k)}l≤κ satisfy (3.5) (direct computations)
and max

1≤k≤M
E‖p̃k−p̄k‖L2(IRd)≤C/(κγ∆) (proved in the Appendix).

5 Simulation Example

The proposed algorithm was tested on a two dimensional tracking problem with
angle-only observations. The state process X = (X1(t), X2(t)) was defined by

dX1(t) = −189.33X3
2 (t) + 9.16X2(t) + 0.001dW1(t),

dX2(t) = −1/3 + 0.03dW2(t),

and the measurements z = (zk), by

zk = arcsin

 X2(tk)√
X2

1 (tk) +X2
2 (tk)

+
0.2√
∆
Vk,
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Table 1: On-line complexity

k exact filter approximate filter ratio
100 4.3 · 109 5.9 · 106 730
150 6.5 · 109 8.6 · 106 755

Table 2: Quality of filtering by the approximate filter

k N75 N95

100 100 100
150 96 100

where ∆ = 0.01, (Vk)k≥1 are independent standard Gaussian random variables, and
the initial state distribution p0(x1, x2) = 1

c0
[exp(−500(x1−0.37)2−500(x2−0.31)2)+

3
4
exp(−1000(x1 + 0.32)2 − 1000(x2 − 0.22)2)], c0 is the normalizing constant. It was

shown in [12] that the extended Kalman filter fails for this model.
To compute the exact filter, the Fokker-Planck equation was solved according

to the method of lines: the partial differential equation was reduced to a system
of ordinary differential equations by approximating the spatial derivatives using the
up-wind scheme [13], and then the resulting system of ODEs was solved using the
Padé method [14]. The spatial domain was restricted to a rectangle [−0.8; 0.8] ×
[−0.5; 0.5] with Ns = 80 × 60 points uniformly distributed in each direction. The
same approximation was used to compute the coefficients q according to (3.4). The
approximate filter was used with Nκ = 66 basis functions, which corresponds to
κ = 10. The computations were performed on the SGI PowerChallenge machine.

The computational complexity of the algorithms was characterized by the number
of on-line floating point operations (flops) to evaluate the filtering density at the given
time moment tk = k∆. The quality of filtering was characterized by the number of
times Nβ the state process was in the β% confidence interval as given by the computed
density. To determine Nβ, one realization of the state process was used with 100
independent measurement sequences.

The results indicate that the proposed algorithm reduces the complexity by a
factor of more than 700 (Table 1), while providing sufficiently good quality of filtering
(Table 2).

6 Conclusion

The optimal filter for a nonlinear diffusion process observed in discrete time requires
on-line solution of the Fokker-Planck equation and subsequent evaluation of integrals
in the spatial domain. Using the parametric representation of the unnormalized
filtering density, these time consuming operations can be performed off line and the
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results stored. In the resulting algorithm, the on-line computations can be organized
recursively in time and are relatively simple even when the dimension of the state
process is large. Moreover, certain functionals of the state process can be estimated
without computing the unnormalized filtering density. As the sampling frequency of
the observations increases, the computed estimate converges to the optimal in the
mean.
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Appendix

Below, Theorem 3.1 is proved. It is assumed everywhere that the filtering problem is
considered on a fixed time interval [0, t0], where t0 = M∆.

1. Change of measure. Following [6], define

Λ0 = 1, Λk =
k∏

i=1

exp
(
∆

r∑
l=1

hl(Xti)zl(i)−
∆
2

r∑
l=1

h2
l (Xti)

)
, k = 1, . . . ,M,

and introduce a new measure P̃ on (Ω,F) by dP̃ = (ΛM )−1dP.
Lemma A.1. The measure P̃ is a probability measure on (Ω,F). Moreover, under

measure P̃, the distribution of the process (X(t))0≤t≤M∆ does not change, {z(k)}1≤k≤M

is a sequence of i.i.d. Gaussian random variables independent of the state process, and
Ẽz(k) = 0, Ẽz(k)z(k)T = (1/∆)I, where Ẽ is the expectation with respect to measure P̃.

Proof. This lemma can be proved in the same way as the statements of Theorem 1 and
Remark 1 in [15].

2

2. Proof of Theorem 3.1. In what follows, all constants can depend on the parameters
of the model and on t0. For brevity, ‖ · ‖ is used instead of ‖ · ‖L2(IRd).

Lemma A.2. There is a constant Ch so that for every integrable random variable ξ,

E|ξ| ≤ Ch

√
Ẽ|ξ|2.

Proof. This follows from the definition of Ẽ and the Cauchy-Schwartz inequality.
2
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Recall that p̃k(x) is defined by (4.1) as p̃0(x) = p(x), p̃k(x) = Φk(x)T∆p̃k−1(x), k≥ 1,
where

Φk(x)=1 + ∆
r∑

i=1

(
hi(x)zi(k) +

1
2
h2

i (x)
(
z2
i (k)∆− 1

))
+ ∆2

r∑
i6=j=1

hi(x)hj(x)zi(k)zj(k).

Also, define Ψk(x) := exp
(
∆
∑r

l=1 hl(x)zl(k)− 0.5∆
∑r

l=1 h2
l (x)

)
so that

pk(x) = Ψk(x)T∆pk−1(x). Then, by the previous lemma, inequality (3.8) will follow from

sup
1≤k≤M

Ẽ‖pk − p̃k‖2 ≤ Ãp∆2 (A.1)

and

sup
1≤k≤M

Ẽ‖p̃k − p̄k‖2 ≤ B̃p

∆
exp

(
−C̃p(lnκ)2

)
. (A.2)

The proof of these inequalities requires some technical results summarized in the fol-
lowing lemma.

Lemma A.3.
Ẽ‖pk‖2 ≤ C0‖p‖2, k ≤ M, (A.3)

ẼΦk(x)(Ψk(x)− Φk(x)) = 0, (A.4)

Ẽ‖ΦkT∆ϕ‖2 ≤ eC1∆Ẽ‖ϕ‖2, (A.5)

where ϕ is Zk−1-measurable.
Proof. The regularity assumptions imply that the operator T∆ is continuous in L2(IRd):

‖T∆ · ‖ ≤ eC2∆‖ · ‖. (A.6)

This inequality is well-known [16, 17]. Since z(k) is independent of Zk−1 under measure P̃,
(A.3) follows by induction from (2.4) and (A.6).

To prove (A.4), define H̃(x) := 2−n/2Hn(x/
√

2), where Hn(x) is the n-th Hermit poly-
nomial (3.2). Then

Ψk(x) =
r∏

l=1

(∑
n≥0

hn
l (x)
n!

∆n/2H̃n(
√

∆zl(k))
)
. (A.7)

Since ẼH̃n(
√

∆zl(k))H̃m(
√

∆zs(k)) = n!δmnδls, the result follows.
Finally, (A.4) implies that ẼΨ2

k(x) = ẼΦ2
k(x) + Ẽ(Ψk(x) − Φk(x))2, and consequently

ẼΦ2
k(x) ≤ ẼΨ2

k(x). Then (A.5) can be derived from (A.6) in the same way as (A.3).
2

It follows from (A.4) that

Ẽ‖pk − p̃k‖2 ≤ Ẽ‖ΦkT∆(pk−1 − p̃k−1)‖2 + Ẽ‖(Ψk − Φk)T∆pk−1‖2. (A.8)

Next, the definition of Φk(x) and (A.7) imply that

Ẽ(Ψk(x)− Φk(x))2 ≤ C3∆3. (A.9)

Combining (A.3), (A.5), (A.8), and (A.9) results in Ẽ‖pk − p̃k‖2 ≤ eC1∆Ẽ‖pk−1 − p̃k−1‖2 +
C4∆3 with C4 = C0C3e

C2t0 , and (A.1) follows by the Gronwall inequality.

11



To prove (A.2), denote by Πκ the L2(IRd) - orthogonal projection on {el}l≤κ, where el

is defined in (3.3). Then p̄k = ΠκΦk(x)T∆p̄k−1(x) and

Ẽ‖p̃k − p̄k‖2 = Ẽ‖ΠκΦkT∆(p̃k−1 − p̄k−1)‖2 + Ẽ‖(1−Πκ)ΦkT∆p̃k−1‖2. (A.10)

By (A.5),
Ẽ‖ΠκΦkT∆(p̃k−1 − p̄k−1)‖2 ≤ eC1∆Ẽ‖p̃k−1 − p̄k−1‖2. (A.11)

Next, since all the derivatives of the initial density p(x) are square integrable with any
polynomial weight, so are the derivatives of p̃k for all k ≤ M – by the regularity assumptions
and (2.4). This implies that the Fourier - Hermite coefficients of p̃k decay faster than
algebraically (see [10, pp. 43–44] for d = 1; the same arguments can be applied in the
general case), i.e. for every γ > 0 there is C5(γ) > 0 so that

Ẽ‖(1−Πκ)ΦkT∆p̃k−1‖2 ≤ C5(γ)
κ2γ

. (A.12)

Finally, it is shown in [18, Section 4.5.2] that the bound in (A.12) can be replaced by
C6 exp

(
−C7(lnκ)2

)
. Combining (A.10), (A.11), and (A.12) results in

Ẽ‖p̃k− p̄k‖2 ≤ eC1∆Ẽ‖p̃k−1− p̄k−1‖2 +C6 exp
(
−C7(lnκ)2

)
, and (A.2) follows by the Gron-

wall inequality.
To prove (3.7) note that, if f ∈ L2(IRd), then (3.7) is implied by (3.6) and the Cauchy-

Schwartz inequality. For general f satisfying (3.1), inequality (3.7) is proved in a similar
way by first establishing (3.6) in a weighted space L2(IRd, s) for sufficiently large s ([17],
inequality of the type (A.6) still holds). Details of the argument can be found in [18, 1].
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