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Abstract

A maximum likelihood estimate of a scalar parameter is constructed for a stochastic
evolution system using the Galerkin approximation of the original equation. Conditions
are established to guarantee the consistency and asymptotic normality of the estimator
as the dimension of the approximation tends to infinity. Examples are given to illustrate
the results.

1 Introduction

Many parameter estimation problems for stochastic partial differential equations can
be reduced to the following model:

du(t, ω) = (A0(t)u(t, ω) + θA1(t)u(t, ω) + f(t)) dt + BdW (t), (1.1)

where A0, A1, and B are linear operators, W is a cylindrical Brownian motion, all
defined in some Hilbert space H, and θ is an unknown scalar parameter. A computable
estimate of θ based on the observations of u can usually involve only a finite-dimensional
approximation of the random field u. If the operators A0, A1, and B have a common
system of eigenfunctions, then equation (1.1) is diagonalizable so that the maximum
likelihood estimator (MLE) of θ can be easily constructed and its properties studied.
In [1, 2] model (1.1) is considered under the assumption that A0, A1, and B are elliptic,
selfadjoint operators with a common system of eigenfunctions in a bounded domain
of IRd. It was demonstrated in these works that under certain conditions the MLE
is consistent, asymptotically normal, and asymptotically efficient as the dimension of
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the approximation tends to infinity. It was mentioned in [2] that some of the results
remain valid if the operators in (1.1) do not commute.

In this paper, equation (1.1) is studied in the general Hilbert space setting without
any assumptions on the eigenfunctions of the operators A0 and A1, and the MLE of θ is
based on the Galerkin approximation of (1.1). The objective is to establish conditions
under which the MLE is consistent and asymptotically normal as the dimension of the
approximation tends to infinity. These conditions are related to the separation of the
corresponding sequences of the probability measures and can be verified in a number
of examples (Section 4).

Unless the system is diagonalizable, the Galerkin approximation is usually not ob-
servable and therefore the results presented in this paper are mainly of theoretical
interest. However the conditions for asymptotic optimality for maximum likelihood
estimators obtained with this approach can be applied to approximate maximum like-
lihood estimators based on other finite-dimensional approximations of (1.1).

2 Stochastic Evolution Systems in Hilbert Scales

Let H be a real separable Hilbert space with the inner product (·, ·)0 and the corre-
sponding norm ‖ · ‖0. Consider a linear operator Λ on H such that ‖Λf‖0 ≥ c‖f‖0 for
all f from the domain of Λ. Then the powers Λs of Λ are defined for all s ∈ IR and
generate the spaces Hs as follows [3]:

— for s ≥ 0, Hs is the domain of Λs;

— for s < 0, Hs is the completion of H with respect to the norm ‖ · ‖s := ‖Λs · ‖0.

The collection of spaces {Hs}s∈IR is a Hilbert scale with the following
properties [3]:

— for s2 > s1, the space Hs2 is continuously embedded in Hs2 ;

— for every s ∈ IR and r > 0, the spaces (Hs+r,Hs,Hs−r) form a normal triple with
the canonical bilinear functional
〈y1, y2〉s,r = (Λs−ry1,Λs+ry2)0, where y1 ∈ Hs−r, y2 ∈ Hs+r;

— Λs(Hr) = Hs−r.

Let (Ω,F ,F = (Ft), P ) be a filtered probability space with the usual assumtions,
and let W = (W (t))t≥0 be a cylindrical Brownian motion on this space. This means
that a family of continuous martingales Wt(f), f ∈ H, is defined on (Ω,F ,F,P) so that
the quadratic covariation 〈W·(f),W·(g)〉t = t(f, g)0 for every f, g ∈ H. The stochastic
integral

∫ T
0 (ξt, dW (t))0 is

defined [4, 5] for predictable processes ξ = (ξt)0≤t≤T ∈ L2(Ω× [0, T ];H), that is (ξt, y)0
is a predictable stochastic process for every y ∈ H.

Consider the following stochastic evolution system:

duθ(t, ω) = (Aθ(t)u(t, ω) + f(t))dt + B dW (t), 0 < t ≤ T,
uθ|t=0 = u0,

(2.1)

where θ belongs to some parameter space Θ ⊂ IR, and Aθ = A0 + θA1. The linear
operators A0, A1, and B are deterministic. Equation (2.1) will be studied under the
following assumptions:
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(A1) There exists α ≥ 0 such that Λ−αB is a Hilbert-Schmidt operator in H;

(A2) There exists γ ≥ 0 such that for every t ∈ [0, T ] the operators A0 and A1 are
bounded and linear from Hγ−α to H−γ−α;

(A3) For every θ ∈ Θ there exist positive numbers δ = δ(θ) and K = K(θ) such that
for all t ∈ [0, T ] and y ∈ Hγ−α,

〈Aθy, y〉−α,γ ≤ −δ‖y‖2
γ−α + K‖y‖2

−α, and ‖Aθy‖−γ−α ≤ K‖y‖γ−α;

(A4) u0 is an F0-measurable random element with values in H−α and
E‖u0‖2

−α < ∞;

(A5) f = f(t) is an H−γ−α-valued deterministic function and∫ T
0 ‖f(t)‖2

−γ−α < ∞.

Assumption (A1) implies that BW (t) is an H−α-valued Wiener process, therefore
by Theorem 3.1.4 in [6] for every θ ∈ Θ equation (2.1) has a unique solution uθ in the
normal triple (Hγ−α,H−α,H−γ−α) and

uθ ∈ L2(Ω;C([0, T ];H−α)) ∩ L2(Ω× [0, T ];Hγ−α). (2.2)

The solution u satisfies

E sup
0≤t≤T

‖u(t)‖2
−α + E

∫ T

0
‖u(t)‖2

γ−αdt < ∞. (2.3)

The approximate maximum likelihood estimator for the parameter θ will be based
on a finite-dimensional approximation of (2.1). To study the properties of this estima-
tor, it is further assumed that

(A6) Operators Λ and B have a common system of eigenfunctions {hk}k≥0 with the
following properties:

— {hk}k≥0 is a complete orthonormal system in H;
— hk ∈ ∩sH

s for all k ≥ 0;

(A7) The eigenvalues of B are nonzero, and the operator A1 is not identically zero.

3 Consistency and Asymptotic Normality of the

Approximate Maximum Likelihood Estimator

For a positive integer N the operator ΠN acting from ∪sH
s to ∩sH

s is defined by
ΠN : u 7→

∑N
k=0 (u, hk)0 hk, where {hk}k≥0 is the orthonormal basis of H defined in

(A6). Then ΠN is an orthogonal projection in the space H, and ‖Πnu‖s ≤ ‖u‖s for all
s ∈ IR.

The finite-dimensional Galerkin approximation of (2.1) is defined by

uθ,N (t) = Πnu0 +
∫ t

0
ΠN

(
Aθ(s)uθ,N (s) + f(s)

)
ds + ΠNBWN (t), (3.1)

where WN = WN (t) is a standard Wiener process with the components Wt(hk), 0 ≤
k ≤ N . It follows from assumption (A6) that ΠNB is a diagonal matrix whose diagonal
elements are the first N eigenvalues of the operator B.
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Lemma 3.1. Under the assumptions (A1)–(A6),

lim
N→∞

E
∫ T

0
‖uθ,N (t)− uθ(t)‖2

γ−αdt = 0. (3.2)

Proof. Property (2.2) implies that

lim
N→∞

E
∫ T

0
‖ΠNuθ(t)− uθ(t)‖2

γ−αdt = 0.

On the other hand, for N → ∞, assumption (A3) and the Gronwall inequality imply
that

E
∫ T

0
‖uθ,N (t)−ΠNuθ(t)‖2

γ−αdt ≤ C(θ)E
∫ T

0
‖ΠNAθ(u(t)−ΠNu(t))‖2

−αdt

≤ C(θ)E
∫ T

0
‖uθ(t)−ΠNuθ(t)‖2

γ−αdt → 0,

and (3.2) follows.
2

To simplify the future presentation, the solutions of (2.1) and (3.1) corresponding
to the unknown (but fixed) value of the parameter θ0 ∈ Θ will be denoted by u and uN ,
respectively. The objective is to estimate θ0 given the trajectory of uN (t), 0 ≤ t ≤ T .

Denote by P θ,N
t the measure on C([0, t];Hα) generated by the solution uθ,N (s) of

(3.1) for 0 ≤ s ≤ t. Since for each θ ∈ Θ the process uθ,N is finite dimensional,
assumption (A7) and the results from [7] Chapter 7 imply that for each θ ∈ Θ the
measure P θ,N

t is absolutely continuous with respect to the measure P θ0,N
t with the

likelihood ratio (Radon-Nikodym derivative) given by

dP θ,N
t

dP θ0,N
t

(uN ) = exp
{

(θ − θ0)
∫ t

0

(
ΠNB−2A1(s)uN (s), duN (s)

)
0

−θ2 − θ2
0

2

∫ t

0
‖ΠNB−1A1(s)uN (s)‖2

0ds

− (θ − θ0)
∫ t

0

(
ΠNB−1A1(s)uN (s),ΠNB−1(A0(s)uN (s) + f(s)

)
0

ds

}
.

(3.3)

The maximum likelihood estimate (MLE) θ̂N of θ0 is obtained by maximizing the
likelihood ratio (3.3), where t is replaced by T , with respect to θ ∈ Θ.

θ̂N =

∫ T
0

(
ΠNB−2A1(t)uN (t), duN (t)−ΠN

(
A0(t)uN (t) + f(t)

)
dt
)

0∫ T
0 ‖ΠNB−1A1(s)uN (t)‖2

0dt
. (3.4)

By convention, θ̂N = 0 if
∫ T
0 ‖ΠNB−1A1(s)uN (t)‖2

0dt = 0.

If
∫ T
0 ‖ΠNB−1A1(s)uN (t)‖2

0dt > 0, then (3.4) implies that θ̂N satisfies

θ̂N = θ0 +

∫ T
0

(
ΠNB−1A1(t)uN (t), dWN (t)

)
0∫ T

0 ‖ΠNB−1A1(t)uN (t)‖2
0dt

. (3.5)
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It follows from assumption (A7) that the operator ΠNB−1A1(t) is not identical zero
for all N that are greater or equal to some N0. Thus, by Lemma 7.1 in [7],

P
( ∫ T

0
‖ΠNB−1A1(t)uN (t)‖2

0dt > 0
)

= 1, N ≥ N0,

so that (3.5) holds with probability 1 for all sufficiently large N .
Direct computations show that Fisher’s information IN (θ0) corresponding to the

likelihood ratio (3.3) with t = T is given by

IN (θ0) = E
∫ T

0
‖ΠNB−1A1(t)uθ0,N (t)‖2

0dt. (3.6)

Theorem 3.1.

(i) If

P− lim
N→∞

∫ T

0
‖ΠNB−1A1(t)uN (t)‖2

0dt = ∞, (3.7)

then
P− lim

N→∞
θ̂N = θ0.

If, in addition,

P− lim
N→∞

(IN (θ0))−1
∫ T

0
‖ΠNB−1A1(t)uN (t)‖2

0dt = 1, (3.8)

then θ̂N is asymptotically normal with normalizing factor
√

IN (θ0),
i.e.,

√
IN (θ0)(θ−θ0) converges in distribution, as N →∞, to a Gaussian random

variable with zero mean and unit variance.

(ii) If ∫ T

0
‖B−1A1(t)g(t)‖2

0dt ≤ C

∫ T

0
‖g(t)‖2

γ−αdt (3.9)

for all g ∈ L2([0, T ];Hγ−α), then

P− lim
N→∞

θ̂N = θ0 +

∫ T

0
(B−1A1(t)u(t), dW (t))0∫ T

0
‖B−1A1(t)u(t)‖2

0dt

. (3.10)

Proof. Part (i). Consistency of θ̂N follows from (3.5) and the following result:

Lemma 3.2. If {fn(t)}n≥1 is a sequence of predictable random functions in L2(Ω ×
[0, T ];H) such that

P − lim
N→∞

∫ T

0
‖fn(t)‖2

0dt = ∞ ,

then

P − lim
N→∞

∫ T

0

(
fn(t), dW (t)

)
0∫ T

0
‖fn(t)‖2

0 dt

= 0.
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This result is not new, but, for the sake of completeness, we give a short proof in the
Appendix.

To prove the asymptotic normality, consider

MN
t :=

∫ t
0(ΠNB−1A1(s)uN (s), dWN (s))0ds√

E
∫ T
0 ‖ΠNB−1A1(s)uN (s)‖2

0 ds
.

Then (MN
t ,Ft)0≤t≤T is a continuous square integrable martingale with

quadratic characteristic

〈MN 〉t =
∫ t
0 ‖ΠNB−1A1(s)uN (s)‖2

0ds

E
∫ T
0 ‖ΠNB−1A1(s)uN (s)‖2

0 ds
.

By assumption (3.8), P− limN→∞〈MN 〉T = 1.
On the other hand, if (w1(t),Ft)0≤t≤T is a one dimensional Wiener process and

Mt := w1(t)/
√

T , then (Mt,Ft)0≤t≤T is a continuous square integrable martingale and
〈M〉T = 1. Therefore, by Theorem 5.5.4(II) in [8]

lim
N→∞

MN
T = MT

in distribution. Since MT is a Gaussian random variable with zero mean and unit
variance, the asymptotic normality follows.

Part (ii). The right-hand side of (3.10) is well defined because the process B−1A1(t)u(t)
is in the space L2(Ω× [0, T ];H), by (3.9) and (2.2), and, for every y ∈ H, the process
(B−1A1(t)u(t), y)0 is continuous and thus predictable. It suffices to show that

lim
N→∞

E
∫ T

0
‖ΠNB−1A1(t)uN (t)−B−1A1(t)u‖2

0dt = 0. (3.11)

Then the assertion (3.10) follows from (3.5) and the properties of the stochastic inte-
gral [4, 6]. By the triangle inequality,

E
∫ T

0
‖ΠNB−1A1(t)uN (t)−B−1A1(t)u(t)‖2

0 dt

≤ 2E
∫ T

0
‖ΠNB−1A1(t)uN (t)−ΠNB−1A1(t)u‖2

0 dt

+ 2E
∫ T

0
‖ΠNB−1A1(t)u(t)−B−1A1(t)u‖2

0 dt.

(3.12)

The first term on the right of (3.12) tends to zero as N →∞ since B−1A1u ∈ L2(Ω×
[0, T ];H), and the second term tends to zero by (3.9) and (3.2). This proves (3.11).

2

The conditions (3.7) and (3.9) of Theorem 2.1 hold for a large class of SPDE’s. In [2]
they were verified for elliptic operators A0 and A1 which have the same eigenfunctions
as the operators Λ and B. Other examples to which Theorem 2.1 applies are given in
Section 4 below.
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Despite their technical nature, conditions (3.7) and (3.9) can be related to some
standard statistical notions.

Definition. Let {Pn}n≥1 and {P̃n}n≥1 be sequences of probability measures on mea-
surable spaces (Ωn,Fn). The sequences are called completely separated if there exist
sets An ∈ Fn such that limn→∞ Pn(An) = 1 and limn→∞ P̃n(An) = 0. The sequences
are called entirely separated if there is a sequence nk ↑ ∞, k → ∞ such that the
sequences {Pnk

}k≥1 and {P̃nk
}k≥1 are completely separated.

Theorem 3.2. (1) If the sequences of measures {P θ,N
T }N≥1 and

{P θ0,N
T }N≥1 are completely separated, then (3.7) holds.
(2) If (3.7) holds, then {P θ,N

T }N≥1 and {P θ0,N
T }N≥1 are entirely separated.

Proof. It follows from Corollary IV.1.37 in [9] that the Hellinger process hN
t (1/2)

corresponding to the likelihood ratio (3.3) and the reference measure P θ0,N
T is given by

hN
t (1/2) =

(θ − θ0)2

8

∫ T

0
‖ΠNB−1A1(t)uN (t)‖2

0dt.

The first statement of the theorem is proved in the same way as property (i) from
Theorem V.2.4a in [9] and the second statement follows from [9] Theorem V.2.4b.

2

Denote by Pθ the measure on C([0, T ];H−α) generated by the solution of (2.1).

Theorem 3.3. The measures Pθ are equivalent for all θ ∈ Θ if (3.9) holds.

Proof. It follows from Corollary 1 in [4] that the measures Pθ1 and Pθ2 are equivalent
if and only if

E
∫ T

0
‖B−1A1(t)uθ(t)‖2

0dt < ∞ (3.13)

for θ = θ1 and θ = θ2. This follows from the conditions (3.9) and (2.2).
2

For the model with commuting operators discussed in [2] the conditions (3.7) and
(3.9) of Theorem 3.1 are equivalent to the absolute continuity or singularity of the
measures Pθ for different θ ∈ Θ, respectively.

4 Examples

In this section, Theorem 3.1 is applied to three parameter estimation models of the
type (2.1). To simplify the notation, the superscript θ is omitted:

1. du = (θ∆ + a(x))udt + (1−∆)−1/2dW, x ∈ [0, 1], with zero boundary conditions;

2. du = (∆ + θa(x)∂/∂x)udt + dW, x ∈ [0, 1], with periodic boundary conditions;

3. du = (∆ + θa(x))udt + dW, x ∈ [0, 1], with either zero or periodic boundary
conditions.

For the first two examples, conditions (3.7) and (3.8) of Theorem 3.1 are fulfilled
so that the maximum likelihood estimator (3.4) for θ is consistent and asymptotically
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normal, whereas for the third example, condition (3.9) holds so that the MLE (3.4)
converges to (3.10).

In the following, C denotes a real number, independent of N and independent of
the solutions of (2.1) and (3.1). The constant C may depend on other parameters,
as indicated, and the value of C may be different at different places. For sequences
{an}n≥1 and {bn}n≥1 of positive real numbers the notation an � bn means that

0 < lim inf
n

an/bn ≤ lim sup
n

an/bn < ∞.

Example 1

This system is governed by the following equation with zero boundary conditions.

du(t, x) = (θ∆ + a(x))u(t, x)dt + (1−∆)−1/2 dW (t, x), 0<t≤ T, x∈(0, 1),
u(0, x) = 0, u(t, 0) = u(t, 1) = 0.

(4.1)

It is assumed that the parameter θ is positive, the function a = a(x) belongs to
C∞([0, 1]), and a(n)(0+) = a(n)(1−) = 0 for n ≥ 1, where a(n)(x) is the n-th deriva-
tive of a. Let H = L2([0, 1]), with orthonormal basis hk(x) =

√
2 sin(πkx) for k ≥ 1.

The operator Λ : L2([0, 1]) → L2([0, 1]) defined by Λhk = πk hk satisfies the assump-
tions from Section 2. Therefore Λ generates a Hilbert scale {Hs}s∈IR. The operators
corresponding to the evolution system (2.1) in Section 1 are as follows:

A1 = ∆ satisfies A1hk = −(kπ)2hk.

A0 = a(x) satisfies A0hk =
∑∞

l=1(al−k − al+k)hl.

B = (1 − ∆)−1/2 satisfies Bhk = (1 + (πk)2)−1/2hk, and B is a Hilbert-Schmidt
operator in H = L2([0, 1]).

The assumptions on a(x) imply that |ak| ≤ C(r)/kr for every r > 0 so that

‖A0f‖s ≤ C(s)‖f‖s (4.2)

for all s ∈ IR. Therefore conditions (A1)–(A7) are fulfilled for all θ > 0 with α =
0, γ = 1. Consequently, for every θ > 0, there is a unique solution u of (4.1) satisfying

E sup
0≤t≤T

‖u(t)‖2
0 + E

∫ T

0
‖u(t)‖2

1dt < ∞.

The objective now is to show that (3.7) and (3.8) hold for all θ > 0. To simplify
the presentation it is assumed that θ = 1. The variation of parameters formula yields:(

uN (t), hk

)
0

=
∫ t

0
e−(πk)2(t−s)

(
A0u

N (s), hk

)
0

ds

+
(
1 + (πk)2

)−1/2
∫ t

0
e−(πk)2(t−s) dWk(s).

The first step is to show that Fisher’s information (3.6) diverges as N tends to infinity:

IN (θ0) = E

∫ T

0
‖ΠNB−1A1u

N (t)‖2
0 dt � N3. (4.3)
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The following notation is used for the sake of brevity:

ξk(t) =
∫ t

0
(πk)2e−(πk)2(t−s)dWk(s), XN (t) =

N∑
k=1

ξ2
k(t),

ηN
k (t) = (πk)2

√
1 + (πk)2

∫ t

0
e−(πk)2(t−s)

(
A0u

N (s), hk

)
0

ds.

With this notation,

‖ΠNB−1A1u
N (t)‖2

0 = XN (t) + 2
N∑

k=1

ξk(t)ηN
k (t) +

N∑
k=1

(ηN
k (t))2. (4.4)

By the inequality (1/2)x2−y2 ≤ (x+y)2 ≤ 2(x2 +y2), the norm (4.4) can be bracketed
as follows.

1
2
XN (t)−

N∑
k=1

(ηN
k (t))2 ≤ ‖ΠNB−1A1u

N (t)‖2
0 ≤ 2XN (t) + 2

N∑
k=1

(ηN
k (t))2. (4.5)

Since for each t the random variables {ξk(t)}k≥1 are independent and Gaussian, it
follows that

E
∫ T

0
XN (t)dt �

N∑
k=1

k2 � N3. (4.6)

The asymptotics in (4.3) holds if the expectation E
∫ T
0 (ηN

k (t))2dt is bounded. For this
the following lemma is necessary.

Lemma 4.1. If a > 0 and f(t) ≥ 0 then∫ T

0

( ∫ t

0
e−a(t−s)f(s)ds

)2
dt ≤

∫ T
0 f2(t)dt

a2
.

The above inequality can be easily verified by direct computation; for the sake of
completeness, the main steps are given in the Appendix.

By Lemma 4.1,

E
∫ T

0
(ηN

k (t))2dt ≤ E
∫ T

0
(1 + (πk)2)

(
A0u

N (t), hk

)2

0
dt,

so that by (3.2), (4.2), and (2.3),

lim
N→∞

E
∫ T

0

N∑
k=1

(ηN
k (t))2dt ≤ CE

∫ T

0
‖u(t)‖2

1dt < ∞. (4.7)

The last inequality together with (4.5) and (4.6) implies the asymptotics for Fisher’s
information in (4.3).

Now, (3.7) can be rewritten as follows.

∫ T
0 ‖ΠNB−1A1u

N (t)‖2
0 dt

E
∫ T
0 ‖ΠNB−1A1uN (t)‖2

0 dt
=
∫ T
0 XN (t) dt

IN
+ 2

∫ T
0

∑N
k=1 ξk(t)ηN

k (t) dt

IN

+
∫ T
0

∑N
k=1(η

N
k (t))2dt

IN
.
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Both the second and third terms on the right-hand side converge to zero by (4.3) and
(4.7). For the second term it is necessary to first apply the inequality

|2xy| ≤ δx2 + δ−1y2 (4.8)

which holds for every δ > 0 and every real x, y. The precise arguments are given below.
It will be shown next that the first term converges to 1.By direct computation,

var(XN (t)) =
N∑

k=1

var(ξ2
k(t)) ≤ CN5, ∀t ∈ [0, T ].

Define

Y N :=
∫ T
0 (XN (t)−EXN (t))dt

E
∫ T
0 XN (t)dt

.

Then ∫ T
0 XN (t)dt

E
∫ T
0 XN (t)dt

= 1 + Y N

and

EY 2
N ≤

T

∫ T

0
(var(XN (t))dt(

E
∫ T
0 XN (t)dt

)2 ≤ C

N
→ 0 as N →∞,

so that by Chebychev’s inequality, P− limN→∞ YN = 0 and

P− lim
N→∞

∫ T
0 XN (t)dt

E
∫ T
0 XN (t)dt

= 1. (4.9)

The δ-inequality (4.8) can be written in the following form: (1− δ)x2 + (1− δ−1)y2 ≤
(x + y)2 ≤ (1 + δ)x2 + (1 + δ−1)y2. This and (4.5) imply

(1− δ)E
∫ T

0
XN (t)dt + (1− 1

δ
)E
∫ T

0

N∑
k=1

(ηN
k (t))2 dt

≤ E
∫ T

0
‖ΠNB−1A1u(t)‖2

0dt

≤ (1 + δ)E
∫ T

0
XN (t)dt + (1 +

1
δ
)E
∫ T

0

N∑
k=1

(ηN
k (t))2dt.

Since δ is arbitrary, (3.8) follows from (4.6)–(4.9).

Conclusion. For the model (4.1), the MLE (3.4) is consistent and asymptotically
normal with the normalizing factor

√
IN (θ0) � N3/2.

Example 2

Here the system’s equation is, with periodic boundary conditions,

du(t, x) = (∆ + θa(x)
∂

∂x
)u(t, x)dt + dW (t, x), 0 < t ≤ T, x ∈ [0, 1],

u(0, x) = 0, u(t, 0) = u(t, 1).
(4.10)
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The parameter θ is real, and the function a = a(x) 6≡ 0 is an infinitely differentiable and
periodic with period 1. Let H = L2([0, 1]), with orthonormal basis h0(x) = 1, h2n(x) =√

2 cos(2πnx), h2n−1(x) =
√

2 sin(2πnx) for n ≥ 1. For k ≥ 0 define the numbers

µk = 2π
(
[(k − 1)/2] + 1

)
,

where [x] is the largest integer less than or equal to x. The Hilbert scale {Hs}s∈IR is
generated by the operator Λ with Λhk = µkhk, k ≥ 0. The operator A0 = ∆ satisfies
A0hk = −µ2

k hk, k ≥ 0, and ∂/∂x satisfies

∂

∂x
hk =

{−µkhk+1, if k = 2n− 1
µkhk−1, if k = 2n.

Multiplication by a(x) is defined according to the formulas for the Fourier coefficients
of the product of two functions, and then the operator A1 = a(x)∂/∂x is defined in an
obvious way. The assumptions on a(x) imply that

‖A1f‖s ≤ C(s)‖f‖s+1

for all s ∈ IR. The operator Λ−1 is Hilbert-Schmidt in H = L2([0, 1]) and B = 1,
therefore conditions (A1)–(A7) are fulfilled for all θ ∈ IR with α = γ = 1. As a result,
for every θ ∈ R, there is a unique solution u of (4.10) satisfying

E sup
0≤t≤T

‖u(t)‖2
−1 + E

∫ T

0
‖u(t)‖2

0dt < ∞.

The objective now is to show that (3.7) and (3.8) hold for all θ ∈ IR. Again, it is
assumed that θ = 1. For technical reasons, equation (4.10) is rewritten as follows:

du = ((∆− 1) + (a(x)
∂

∂x
+ 1))udt + dW.

As in Example 1, the following notation is introduced:

ξk(t) =
∫ t

0
e−(1+µ2

k)(t−s)dWk(s), XN (t) =
N∑

l,k=0

alkξl(t)ξk(t),

where alk =
∑N

n=0(A1hl, hn)0(A1hk, hn)0, and

ηN
k (t) =

∫ t

0
e−(1+µ2

k)(t−s)
(
Ã1u

N (s), hk

)
0

ds,

where Ã1 = A1 + 1. This notation, equation (3.1), and the variation of parameters
formula yield:

‖ΠNB−1A1u
N (t)‖2

0 = XN (t) + 2
N∑

l,k=0

alkξl(t)ηN
k (t) +

N∑
l,k=1

alkη
N
l (t)ηN

k (t).

For every t > 0 the random variables {ξk(t)}k≥0 are independent and Gaussian
with zero mean and variance

Rk(t) =
1

2(1 + µ2
k)

(
1− e−(1+µ2

k)t
)
.
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It follows that

E
∫ T

0
XN (t)dt =

N∑
k=0

akk

∫ T

0
Rk(t)dt

and

var(XN (t)) = 2
N∑

k,l=0

a2
klRk(t)Rl(t).

Direct computations similar to those in Example 1 yield
N∑

k=0

akk

∫ T

0
Rk(t)dt �

N∑
k,n=0

1
1 + µ2

k

(A1hk, hn)20 � ‖a‖2
0N � N,

var(XN (t)) ≤ CN,

and

lim
N→∞

E
∫ T

0

N∑
l,k=1

alkη
N
l (t)ηN

k (t)dt ≤ CE
∫ T

0
‖u(t)‖2

0dt < ∞.

Now, conditions (3.7) and (3.8) of Theorem 3.1 follow in the same way as in Example
1.

Conclusion. For the model (4.10), the MLE (3.4) is consistent and asymptotically
normal with normalizing factor

√
IN (θ0) � N1/2.

Example 3

Let a = a(x) 6≡ 0 be either as in Example 1 or in Example 2 and consider the equation

du(t, x) = (∆u(t, x) + θa(x)u(t, x))dt + dW (t, x), 0 < t ≤ T (4.11)

with zero initial conditions and zero or periodic boundary conditions. Then it follows
from the results of Examples 1 and 2 that the solution u of (4.11) exists and is unique
in the corresponding Hilbert scale, and

E sup
0≤t≤T

‖u(t)‖2
−1 + E

∫ T

0
‖u(t)‖2

0 dt < ∞.

In this case A1 = a(x) and B = 1, so that (3.9) holds with α = γ = 1. This means that
for the model (4.11) the MLE (3.4) is asymptotically biased, and the MLE converges
to

θ0 +
∫ T
0 (a(·)u(t), dW (t))0∫ T

0 ‖a(·)u(t)‖2
0 dt

,

as N tends to infinity.

Appendix

Proof of Lemma 3.2 For an arbitrary ε ∈ (0, 1) define

xε
n := ε

∫ T

0

(
fn(s), dW (s)

)
0

and 〈xε
n〉 := ε2

∫ T

0
‖fn(s)‖2

0ds. Then

P

∫ T
0

(
fn(s), dW (s)

)
0∫ T

0 ‖fn(s)‖2
0ds

> ε

 = P
(

exp (xε
n − 〈xε

n〉/2) > exp (〈xε
n〉/2)

)
,
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and to complete the proof of the lemma it remains to use the Chebuchev inequality
and note that supn E exp (xε

n − 〈xε
n〉/2) ≤ 1 (Theorem 5.2 and Lemma 6.1 of [7]).

2

Proof of Lemma 4.1. Note that( ∫ t

0
easf(s)ds

)2
= 2

∫ t

0

∫ s

0
easeauf(u)f(s)duds.

If U :=
∫ T
0

( ∫ t
0 e−a(t−s)f(s)ds

)2
dt, then direct computations yield

U = 2
∫ T

0

∫ t

0

∫ s

0
e−a(2t−s−u)f(u)f(s)dudsdt ≤ a−1

( ∫ T

0
f2(s)ds

)1/2
U1/2,

and the result follows.
2
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