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Abstract

A recursive in time Wiener chaos representation of the optimal nonlin-
ear filter is derived for a time homogeneous diffusion model with uncorrelated
noises. The existing representations are either not recursive or require a prior
computation of the unnormalized filtering density, which is time consuming.
An algorithm is developed for computing a recursive approximation of the fil-
ter, and the error of the approximation is obtained. When the parameters of
the model are known in advance, the on-line speed of the algorithm can be
increased by performing part of the computations off line.
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1 INTRODUCTION

In a typical filtering model, a non-anticipative functional ft(x) of the unobserved
signal process (x(t))t≥0 is estimated from the observations y(s), s ≤ t. The best mean
square estimate is known to be the conditional expectation E[ft(x)|y(s), s ≤ t], called
the optimal filter. When the observation noise is additive, the Kallianpur-Striebel
formula (Kallianpur (1980), Liptser and Shiryayev (1992)) provides the representation
of the optimal filter as follows:

E[ft(x)|y(s), s ≤ t] =
φt[f ]

φt[1]
,

where φt[·] is a functional called the unnormalized optimal filter. In the particular
case ft(x) = f(x(t)), there are two approaches to computing φt[f ].

In the first approach (Lo and Ng (1983), Mikulevicius and Rozovskii (1995), Ocone
(1983)), the functional φt[f ] is expanded in a series of multiple integrals with respect
to the observation process. This approach can be used to obtain representations of
general functionals, but these representations are not recursive in time. In fact, there
is no closed form differential equation satisfied by φt[f ].
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04-95-1-0164.
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In the second approach (Kallianpur (1980), Liptser and Shiryayev (1992), Ro-
zovskii (1990)), it is proved that, under certain regularity assumptions, the functional
φt[f ] can be written as

φt[f ] =
∫
f(x)u(t, x)dx (1.1)

for some function u(t, x), called the unnormalized filtering density. Even though the
computation of u(t, x) can be organized recursively in time, and there are many nu-
merical algorithms to do this (Budhiraja and Kallianpur (1995), Elliott and Glowin-
ski (1989), Florchinger and LeGland (1991), Ito (1996), Lototsky et al. (1996), etc.),
these algorithms are time consuming because they involve evaluation of u(t, x) at
many spatial points. Moreover, computation of φt[f ] using this approach requires
subsequent evaluation of the integral (1.1).

The objective of the current work is to develop a recursive in time algorithm for
computing φt[f ] without computing u(t, x). The analysis is based on the multiple
integral representation of the unnormalized filtering density (Lototsky et al. (1996),
Mikulevicius and Rozovskii (1995), Ocone, (1983)) with subsequent Fourier series
expansion in the spatial domain. For simplicity, in this paper we consider a one-
dimensional diffusion model with uncorrelated noises. In the proposed algorithm,
the computations involving the parameters of the model can be done separately from
those involving the observation process. If the parameters of the model are known in
advance, this separation can substantially increase the on-line speed of the algorithm.

2 REPRESENTATION OF THE UNNORMAL-

IZED OPTIMAL FILTER

Let (Ω,F ,P) be a complete probability space, on which standard one-dimensional
Wiener processes (V (t))t≥0 and (W (t))t≥0 are given. Random processes (x(t))t≥0 and
(y(t))t≥0 are defined by the equations

x(t) = x0 +
∫ t

0
b(x(s))ds+

∫ t

0
σ(x(s))dV (s),

y(t) =
∫ t

0
h(x(s))ds+W (t).

(2.1)

In applications, x(t) represents the unobserved state process subject to estimation
from the observations y(s), s ≤ t. The σ - algebra generated by y(s), s ≤ t, will be
denoted by Fy

t .
The following is assumed about the model (2.1):

(A1) The Wiener processes (V (t))t≥0 and (W (t))t≥0 are independent of x0 and of
each other;

(A2) The functions b(x), σ(x), and h(x) are infinitely differentiable and bounded
with all the derivatives;

(A3) The random variable x0 has a density p(x), x ∈ R, so that the function
p = p(x) is infinitely differentiable and, together with all the derivatives, decays
at infinity faster than any power of x.
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Let f = f(x) be a measurable function such that

|f(x)| ≤ L(1 + |x|k0) (2.2)

for some k0 ≥ 0 and L > 0. Assumptions (A2) and (A3) imply that E|f(x(t))|2 <∞
for all t ≥ 0 (Liptser and Shiryayev, 1992). Suppose that T > 0 is fixed. It is known
(Kallianpur (1980), Liptser and Shiryayev (1992)) that the best mean square estimate
of f(x(t)) given y(s), s ≤ t ≤ T, is f̂(x(t)) = E[f(x(t))|Fy

t ], and this estimate can
be written by the Kallianpur-Striebel formula as follows:

f̂(x(t)) =
Ẽ[f(x(t))ρ(t)|Fy

t ]

Ẽ[ρ(t)|Fy
t ]

, (2.3)

where

ρ(t) = exp
{ ∫ t

0
h(x(s))dy(s)− 1

2

∫ t

0
|h(x(s))|2ds

}
,

and Ẽ is the expectation with respect to measure P̃(•) :=
∫
•(ρ(T ))−1dP. Moreover,

under measure P̃, the observation process (y(t))0≤t≤T is a Wiener process independent
of (x(t))0≤t≤T .

The conditional expectation Ẽ[f(x(t))ρ(t)|Fy
t ] will be referred to as the unnor-

malized optimal filter and will be denoted by φt[f ]. In this section, a recursive in
time representation of φt[f ] is derived for an arbitrary function f satisfying (2.2).

It is known (Rozovskii, 1990) that, under assumptions (A1) – (A3), there exists
a random field u(t, x), t ≥ 0, x ∈ R, called the unnormalized filtering density, such
that

φt[f ] =
∫
R
u(t, x)f(x)dx. (2.4)

Denote by Pt ϕ(x) the solution of the equation

∂v(t, x)

∂t
=

1

2

∂2(σ2(x)v(t, x))

∂x2
− ∂(b(x)v(t, x))

∂x
, t > 0;

v(0, x) = ϕ(x),

and consider 0 = t0 < t1 < . . . < tM = T , a partition of [0, T ] with steps ∆i =
ti−ti−1 (this partition will be fixed hereafter). The following theorem gives a recursive
representation of the unnormalized filtering density at the points of the partition.

THEOREM 2.1. (cf. Mikulevicius and Rozovskii (1995), Ocone (1983)) Under
assumptions (A1) – (A3),

u(t0, x) = p(x),
u(ti, x) = Ptu(ti−1, ·)(x)+∑
k≥1

∫ ∆i

0

∫ sk

0
. . .

∫ s2

0
Pt−sk

h . . . hPs1u(ti−1, ·)(x)dy(i)(s1) . . . dy
(i)(sk), P− a.s.

(2.5)

for i = 1, . . . ,M , where y(i)(t) = y(t+ ti−1)− y(ti−1), 0 ≤ t ≤ ∆i.
Proof. This follows from Theorem 2.3 in Lototsky et al. (1996) and Theorem 3.1 in
Ito (1951).
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To simplify the further presentation, the following notations are introduced. For
an Fy

ti−1
- measurable function g = g(x, ω) and 0 ≤ t ≤ ∆i,

F
(i)
0 (t, g)(x) := Ptg(x),

F
(i)
k (t, g)(x) :=

∫ t

0

∫ sk

0
. . .

∫ s2

0
Pt−sk

h . . . hPs1g(x)dy
(i)(s1) . . . dy

(i)(sk), k ≥ 1.
(2.6)

With these notations, (2.5) becomes

u(ti, x) =
∑
k≥0

F
(i)
k (∆i, u(ti−1, ·))(x), i = 1, . . . ,M. (2.7)

It is known (Ladyzhenskaia et al. (1968), Rozovskii, (1990)) that 1

||Pt · ||0 ≤ eCt|| · ||0. (2.8)

Then it follows by induction that for every t ∈ [0,∆i], i = 1, . . . ,M , and k ≥ 0,

the operator g 7→ F
(i)
k (t, g) is linear and bounded from L2(Ω, P̃;L2(R)) to itself

and Ẽ||F (i)
k (t, g)||20 ≤ eCt[(Ct)k/k!]Ẽ||g||20. This, in particular, implies that u(ti, ·) ∈

L2(R) P- and P̃- a.s.
In the following theorem, the unnormalized filtering density is expanded with

respect to an orthonormal basis in L2(R). With a special choice of the basis, this
expansion will be used later to construct the recursive representation of the unnor-
malized optimal filter.

THEOREM 2.2. If {en}n≥0 is an orthonormal basis in L2(R) and random variables
ψn(i), n ≥ 0, i = 0, . . . ,M, are defined recursively by

ψn(0) = (p, en)0,

ψn(i) =
∑
k≥0

( ∑
l≥0

(F
(i)
k (∆i, el), en)0ψl(i− 1)

)
, i = 1, . . . ,M, (2.9)

then
u(ti, ·) =

∑
n≥0

ψn(i)en, P− a.s. (2.10)

Proof. The proof is carried out by induction. Representation (2.10) is obvious for

i = 0. If it is assumed for some i− 1 ≥ 0, then (2.7) and the continuity of F
(i)
k (∆i, ·)

imply that

ψn(i) := (u(ti, ·), en)0 =
∑
k≥0

(F
(i)
k (∆i, u(ti−1, ·)), en)0 =∑

k≥0

( ∑
l≥0

(F
(i)
k (∆i, el), en)0ψl(i− 1)

)
,

and (2.10) follows with ψn(i) given by (2.9).

REMARK. Direct computations show that the infinite sums in (2.9) can be inter-
changed even though the double sum need not converge absolutely. The absolute

1|| · ||0 and (·, ·)0 are the norm and the inner product in L2(R). The value of the constant C
depends only on the parameters of the model and is usually different in different places.
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convergence holds if
∑

n

√
Ẽ|ψn(i)|2 <∞, which is the case when {en} is the Hermite

polynomial basis (2.11). For practical computations, both infinite sums in (2.9) must
be truncated. These truncations are studied in Section 3.

To get a representation of φt[f ], it now seems natural, according to (2.4), to
multiply both sides of (2.10) by f(x) and integrate, but this cannot be done in general
because (2.10) is an equality in L2(R) and f need not be square integrable. The
difficulty is resolved by choosing a special basis {en} so that integral

∫
R f(x)en(x)dx

can be defined for every function f satisfying (2.2).
Specifically, let {en} be the Hermite basis in L2(R) (Gottlieb and Orszag (1977),

Hille and Phillips (1957)):

en(x) =
1√

2nπ1/2n!
e−x2/2Hn(x), (2.11)

where Hn(x) is the n th Hermite polynomial defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

, n ≥ 0.

Then the following result is valid.

THEOREM 2.3. If assumptions (A1) – (A3) and (2.2) hold and en is defined by
(2.11), then

φti [f ] =
∑
n≥0

fnψn(i), P− a.s., (2.12)

where fn =
∫
R f(x)en(x)dx and ψn(i) is given by (2.9).

Proof. Condition (2.2) and fast decay of en(x) at infinity imply that fn is well defined
for all n. Then (2.12) will follow from (2.4) and (2.10) if the series

∑
n≥0 fnψn(i) is

P - a.s. absolutely convergent for all i = 0, . . . ,M . Since measures P and P̃ are
equivalent, it suffices to show that∑

n≥0

|fn| Ẽ|ψn(i)| <∞. (2.13)

Arguments similar to those in Hille and Phillips (1957), paragraph (21.3.3), show
that ∫

R
|x|k0 |en(x)|dx ≤ Cn(2k0+1)/4,

which implies that
|fk| ≤ Cn(2k0+1)/4. (2.14)

On the other hand, it follows from the proof of Theorem 2.6 in Lototsky et al. (1996)
that for every integer γ there exists a constant C(γ) such that

Ẽ|ψn(i)| ≤
√

Ẽ|ψn(i)|2 ≤ C(γ)

nγ
. (2.15)

Taking γ sufficiently large and combining (2.14) and (2.15) results in (2.13).

REMARK. It is known (Hille and Phillips (1957), paragraph (21.3.2)) that
supx |en(x)| ≤ Cn−1/12. Together with (2.15), this inequality implies that, for the
Hermite basis, the series in (2.10) converges uniformly in x ∈ R, P - a.s.
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3 RECURSIVE APPROXIMATION OF THE UN-

NORMALIZED OPTIMAL FILTER

It was already mentioned that the infinite sums in (2.9) must be approximated by
truncating the number of terms, if the formula is to be used for practical computa-
tions. Multiple integrals in (2.6) must also be approximated. The effects of these
approximations are studied below.

For simplicity, it is assumed that the partition of [0, T ] is uniform (∆i = ∆ for all
i = 1, . . . ,M). With obvious modifications, the results remain valid for an arbitrary
partition.

Given a positive integer κ, define random variables ψn,κ(i), n = 0, . . . , κ, i =
0, . . . ,M, by

ψn,κ(0) = (p, en)0,

ψn,κ(i) =
κ∑

l=0

(
(P∆el, en)0 + (P∆hel, en)0[y(ti)− y(ti−1)]+

(1/2)(P∆h
2el, en)0[(y(ti)− y(ti−1))

2 −∆]
)
ψn,κ(i− 1), i = 1, . . . ,M.

(3.1)

Then the corresponding approximations to u(ti, x) and φti [f ] are

uκ(ti, x) =
κ∑

n=0

ψn,κ(i)en(x),

φti,κ[f ] =
κ∑

n=0

ψn,κ(i)fn.
(3.2)

The errors of these approximations are given in the following theorem.

THEOREM 3.1. If assumptions (A1) – (A3) and (2.2) hold and the basis {en} is
chosen according to (2.11) then

max
1≤i≤M

√
Ẽ||uκ(ti, ·)− u(ti, ·)||20 ≤ C∆ +

C(γ)

κγ−1/2∆
, (3.3)

max
1≤i≤M

√
Ẽ|φti,κ[f ]− φti [f ]|2 ≤ C∆ +

C(γ)

κγ−1/2∆
. (3.4)

Proof. To simplify the presentation, the notation ||| · |||0 :=
√

Ẽ|| · ||20 will be used.
All constants are denoted by C.

1. Proof of (3.3) is carried out in three steps.
Step 1. Define

u1(t0, x) := p(x),

u1(ti, x) :=
2∑

k=0

F
(i)
k (∆, u(ti−1, ·))(x).

It is proved in Lototsky et al. (1996), Theorem 2.4, that

max
0≤i≤M

|||u(ti, ·)− u1(ti, ·)|||0 ≤ C∆. (3.5)
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Step 2. Define

F̄
(i)
0 (∆, g)(x) := P∆g(x),

F̄
(i)
1 (∆, g)(x) := [y(ti)− y(ti−1)]P∆hg(x),

F̄
(i)
2 (∆, g)(x) := (1/2)[(y(ti)− y(ti−1))

2 −∆]P∆h
2g(x),

and then by induction

ū1(t0, x) := p(x),

ū1(ti, x) =
2∑

k=0

F̄
(i)
k (∆, ū1(ti−1, ·))(x).

Since y(t)−y(ti−1), t > ti−1, is independent of Fy
ti−1

under measure P̃, it follows that

|||ū1(ti, ·)− u1(ti, ·)|||20 = |||P∆(ū1(ti−1, ·)− u1(ti−1, ·))|||20+

|||
2∑

k=0

F̄
(i)
k (∆, ū1(ti−1, ·))− F

(i)
k u1(ti−1, ·))|||20.

(3.6)

Next,

|||
2∑

k=0

F̄
(i)
k (∆, ū1(ti−1, ·))− F

(i)
k (∆, u1(ti−1, ·))|||20 ≤

4
2∑

k=1

(
|||F̄ (i)

k (∆, ū1(ti−1, ·)− u1(ti−1, ·))|||20+

|||F̄ (i)
k (∆, u1(ti−1, ·))− F

(i)
k (∆, u1(ti−1, ·))|||20

)
.

(3.7)

It follows from (2.8) and the definition of F̄
(i)
k that

4|||F̄ (i)
k (∆, ū1(ti−1, ·)− u1(ti−1, ·))|||20 ≤

(C∆)k

k!
eC∆|||ū1(ti−1, ·)− u1(ti−1, ·)|||20, k = 1, 2.

(3.8)

The Taylor formula and the definition of Pt imply

||P∆−shPsg − P∆hg||20 ≤ Cs2||g||2H2 ,

where || · ||H2 is the norm in the corresponding Sobolev space. Then

|||F̄ (i)
1 (∆, u1(ti−1, ·))− F

(i)
1 (∆, u1(ti−1, ·))|||20 ≤ CẼ||u1(ti−1, ·)||2H2∆3;

|||F̄ (i)
2 (∆, u1(ti−1, ·))− F

(i)
2 (∆, u1(ti−1, ·))|||20 ≤ CẼ||u1(ti−1, ·)||2H2∆4.

(3.9)

Finally, the continuity of operator Pt in H2(R) (Ladyzhenskaia et al. (1968), Ro-
zovskii, (1990)) implies

Ẽ||u1(ti−1, ·)||2H2 ≤ eCT ||p||2H2 ≤ C. (3.10)

Combining inequalities (3.6) – (3.10) results in

|||ū1(ti, ·)− u1(ti, ·)|||20 ≤ eC∆|||ū1(ti−1, ·)− u1(ti−1, ·)|||20 + C∆3
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(at least for sufficiently small ∆), which, by the Gronwall Lemma, implies

max
0≤i≤M

|||ū1(ti, ·)− u1(ti, ·)|||20 ≤ C∆2. (3.11)

Step 3. The same arguments as in the proof of Theorem 2.6 in Lototsky et al.
(1996) show that

|||ū1(ti, ·)− uκ(ti, ·)|||0 ≤
C(γ)

κγ−1/2∆
. (3.12)

Combining (3.5), (3.11), (3.12), and the triangle inequality results in (3.3).
2. The natural way of proving (3.4) is to use (3.3) and the Cauchy inequality. To

deal with the technical difficulty that f /∈ L2(R), the following spaces are introduced
(Rozovskii (1990), Sec. 4.3): for r ∈ R, L2(R, r) = {ϕ :

∫
R ϕ

2(x)(1 + x2)rdx < ∞}.
The weighted Sobolev spaces Hn(R, r) are defined in a similar way. Then L2(R, r)
is a Hilbert space with inner product

(ϕ1, ϕ2)r :=
∫
R
ϕ1(x)ϕ2(x)(1 + x2)rdx

and the corresponding norm || · ||r. If ϕ1∈L2(R, r) and ϕ2∈L2(R,−r), then∫
Rϕ1(x)ϕ2(x)dx is well defined and will be denoted by (ϕ1, ϕ2)0. Condition (2.2)

implies that f ∈ L2(R,−r) for all r > k0 + 1/2. On the other hand, assumptions
(A2) and (A3) imply that u(t, ·) ∈ L2(R, r) for all r ∈ R (Rozovskii, 1990, Theorem
4.3.2), and the same is true for
u1(ti, ·), ū1(ti, ·), and uκ(ti, ·).

Fix an even integer r > k0 + 1/2 and define β(x) := (1 + x2)r/2. Notation

||| · |||r :=
√

Ẽ|| · ||2r will also be used.
By the Cauchy inequality,√

Ẽ|φti,κ[f ]− φti [f ]|2 ≡
√

Ẽ(uκ(ti, ·)− u(ti, ·), f)2
0 ≤√

||f ||2−r|||uκ(ti, ·)− u(ti, ·)|||2r ≤ ||f ||−r(|||u(ti, ·)− u1(ti, ·)|||r+
|||u1(ti, ·)− ū1(ti, ·)|||r + |||ū1(ti, ·)− uκ(ti, ·)|||r).

(3.13)

.
Since the operator Pt is linear bounded from Hn(R, r) to itself (Ladyzhenskaia

et al. (1968), Rozovskii (1990)), the arguments of steps 1 and 2 can be repeated to
conclude that

|||u(ti, ·)− u1(ti, ·)|||r + |||u1(ti, ·)− ū1(ti, ·)|||r ≤ C∆. (3.14)

Next, it follows from the proof of Theorem 2.6 in Lototsky et al. (1996) that for
every positive integer γ there exists C(γ) such that for all i = 0, . . . ,M

Ẽ(ū1(ti, ·), en)2
0 ≤

C(γ)

n2γ+r
. (3.15)

Similarly, by (3.12), there is C(γ) so that

|||ū1(ti, ·)− uκ(ti, ·)|||20 ≤
C(γ)

κ2γ+r−1∆2
. (3.16)
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On the other hand, repeated application of the relations
e′n = (

√
nen−1 −

√
n+ 1en+1)/

√
2 and −e′′n + (1 + x2)en = 2(n+ 1)en shows that

(g, en)2
r/2 ≤ C

n+r/2∑
m=n−r/2

mr(g, em)2
0

(if m < 0, the corresponding term in the sum is set to be zero), and consequently∑
n≥0

(g, en)2
r/2 ≤ C

∑
n≥0

nr(g, en)2
0.

Combining the last inequality with the identities

||g||2r = ||gβ||20 =
∑
n

(gβ, en)2
0 =

∑
n

(g, en)2
r/2

results in

|||ū1(ti, ·)− uκ(ti, ·)|||2r =
∑
n≥0

Ẽ(ū1(ti, ·)− uκ(ti, ·), en)2
r/2 ≤

C
∑
n≥0

nrẼ(ū1(ti, ·)− uκ(ti, ·), en)2
0 = C

κ∑
n=0

nrẼ(ū1(ti, ·)− uκ(ti, ·), en)2
0+

C
∑
n>κ

nrẼ(ū1(ti, ·), en)2
0.

Now, (3.15) and (3.16) imply

|||ū1(ti, ·)− uκ(ti, ·)|||2r ≤ Cκr
κ∑

n=1

Ẽ(ū1(ti, ·)− uκ(ti, ·), en)2
0+

C(γ)
∑
n>κ

n−2γ ≤ κr|||ū1(ti, ·)− uκ(ti, ·)|||20 +
C(γ)

κ2γ−1
≤ C(γ)

κ2γ−1∆2
.

Together with (3.13) and (3.14), the last inequality implies (3.4).

REMARK. The constants in (3.3) and (3.4) are determined by the bounds on the
functions b, σ, h, and p and their derivatives and by the length T of the time interval.
The constants in (3.4) also depend on L and k0 from (2.2).

The error bounds in (3.3) and (3.4) involve two asymptotic parameters: ∆ (the
size of the partition of the time interval) and κ (the number of the spatial basis
functions). With the appropriate choice of these parameters, the errors can be made
arbitrarily small.

In Lototsky et al. (1996), the multiple integrals (2.6) were approximated using
the Cameron-Martin version of the Wiener chaos decomposition. The analysis was
carried out only for the unnormalized filtering density, but the results can be extended
to the unnormalized optimal filter φt[f ] in the same way as it is done in the present
work. The overall error of approximation from Lototsky et al. (1996) has the same
order in ∆ and κ as (3.3), but the approximation formulas are more complicated.

Formulas (3.1) and (3.2) provide an effective numerical algorithm for computing
both the unnormalized filtering density u(t, x) and the unnormalized optimal filter
φt[f ] independently of each other. If the ultimate goal is an estimate of f(x(ti)) (e.g.
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estimation of moments of x(ti)), it can be achieved with a given precision recursively
in time without computing u(ti, x) as an intermediate step. This approach looks espe-
cially promising if the parameters of the model (i.e. functions b, σ, h and the initial
density p) are known in advance. In this case, the values of (P∆el, en)0, (P∆hel, en)0,
(1/2)(P∆h

2el, en)0, and fn = (f, en)0, n, l = 1, . . . , κ, can be pre-computed and stored.
When the observations become available, the coefficients ψn(i) are computed accord-
ing to (3.1) and then φti,κ[f ] is computed according to (3.2). As a result, the algorithm
avoids performing on line the time consuming operations of solving partial differen-
tial equations and computing integrals. Moreover, only increments of the observation
process are required at each step of the algorithm.
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