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Abstract. The objective of this paper is to develop an approach to nonlinear filtering based on
the Cameron–Martin version of Wiener chaos expansion. This approach gives rise to a new numerical
scheme for nonlinear filtering. The main feature of this algorithm is that it allows one to separate the
computations involving the observations from those dealing only with the system parameters and to
shift the latter off-line.
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1. Introduction. Nonlinear filtering is a classic problem of applied stochastic
analysis (see, e.g., Kallianpur [19], Kunita [23], Kushner [24], Liptser and Shiryayev
[27], etc.). It is of notable theoretical and practical importance by itself and also as
a part of control theory for partially observable stochastic systems (see, e.g., Fleming
and Pardoux [11]).

In this paper we consider the filtering scheme where the signal process x(t) is a
Markov diffusion process and the observation process is of the form

y(t) = y0 +
∫ t

0
h(x(s))ds+ w(t),

where w(t) is a Brownian motion independent of the process x(t).
Let f be a given bounded function on Rd and f̂(x(t)) be the optimal filter (the

best in the mean-square estimate for f(x(t)) based on observations y(s), s ≤ t).
A fundamental result of filtering theory says that the optimal filter is given by the
formula

f̂(x(t)) =

∫
Rd f(x)u(t, x)dx∫

Rd u(t, x)dx
,(1.1)

where u(t, x) is the so-called unnormalized filtering density (UFD); of course, some
regularity assumptions are needed to ensure the existence of the density.

A standard way to study the UFD (analytically or numerically) is to treat it as
a solution of the Zakai equation

du(t, x) = L∗u(t, x)dt+ h(x)u(t, x)dy(t),(1.2)

where L∗ is the formally adjoint operator to the generator of the Markov process x(t)
(see, e.g., Baras [2]; Benesh [3]; Bensoussan, Glowinski, and Rascanu [4]; Clark [8];
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DiMasi and Runggaldier [9]; Elliott and Glowinski [10]; Florchinger and LeGland [12];
Krylov and Rozovskii [20]; Kunita [22]; Pardoux [33]; Rozovskii [34]; Zakai [37]; etc.).

Another comparatively recent approach is based on the Wiener chaos expansion
(WCE) (see references below). In this paper we further develop a version of this
approach based on the Cameron–Martin orthogonal decomposition of L2-functionals
of a Gaussian process (see Cameron and Martin [7]). We prove that the UFD can be
written in the form

u(t, x) =
∑
α

1√
α!
ϕα(t, x)ξα(y),(1.3)

where ξα(y) are Wick polynomials (certain products of Hermite polynomials; see,
e.g., [14]) of Wiener integrals

∫ t
0 mi(s)dy(s), where {mk} is a complete orthonormal

system in L2([0, t]), and ϕα(t, x) are deterministic Hermite–Fourier coefficients in the
Cameron–Martin orthogonal decomposition of u(t, x) (see Mikulevicius and Rozovskii
[30, 31]). The Wick series expansion (1.3) converges in L2-sense on the reference
probability space.

We prove that the set of functions {ϕα(t, x)} is a solution to a simple recursive
system of Kolmogorov-like equations (see (2.6)). Below it will be referred to as the
S-system.

Our interest in the WCE was motivated mainly by computational purposes. One
important feature of the expansion (1.3) is that it separates observations and param-
eters in that the Wick polynomials are completely defined by the observation process
y(t) but the Hermite–Fourier coefficients ϕα(t, x) are determined only by the coeffi-
cients of the signal process x(t), its initial distribution, and the observation function h.

Unfortunately, direct application of the above expansion for numerical compu-
tations is impractical, limited, at best, to short time intervals. The main reason is
possible exponential growth of the errors inflicted by truncation of the infinite series
(1.3) as the time interval [0, t] increases (Theorem 2.2).

One important objective of the paper is to develop a numerical approximation
scheme for the UFD which retains the separation of observations and parameters but
is not subject to the aforementioned limitations (Theorem 2.5 and the accompanying
algorithm).

This recursive scheme splits into two parts: deterministic and stochastic. The
deterministic part (solving the S-system) might be time consuming but can be per-
formed off-line since in many applications the coefficients of the processes x(t), y(t)
and also of the S-system are known a priori. The stochastic part (determining the
Wick polynomials ξα(y)) is computationally simple and can be performed in real time.
In this paper this scheme is referred to as the spectral separating scheme (S3).

We prove the strong convergence of S3 both in L2 and C spaces and demonstrate
that the overall rate of convergence (on- and off-line) is of order O(∆), where ∆ is
the time step (Theorems 2.2 and 2.4).

S3 can be also viewed as a time-discretization scheme for a solution of the Zakai
equation. In section 4 we demostrate that some well-known discretization algorithms
for this equation (e.g., explicit Euler scheme, splitting-up method (see [4, 26])) can
be derived from a multistep version of (1.3). In this section we also discuss the
computational complexity of S3, compare it with the complexity of the splitting-up
method, and present some results of numerical simulations.

We conclude the introduction with some historical remarks. The idea of obtaining
an “explicit” WCE solution of a stochastic (ordinary) differential equation can be
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traced back to the paper [21] by Krylov and Veretennikov (see also Zvonkin and
Krylov [38]). Kunita [22] applied this idea to prove uniqueness of the Zakai equation.
Wong [35] obtained the solution of a special class of nonlinear filtering problems in the
form of the WCE. Ocone [32] pioneered finite-order WCEs of normalized nonlinear
filters (see also references therein).

In these works the multiple Wiener integral version of the WCE was used. The
Cameron–Martin development is analytically equivalent to this version of the WCE
(see, e.g., Ito [17]). However, it has some computational advantage since only ordinary
Wiener integrals are required in this approach. Lo and Ng [28] were the first ones
to utilize the above fact. They modified Ocone’s approximation using the Cameron–
Martin expansion. Unfortunately, the equations for the deterministic coefficients of
the finite-order approximations in [28] are quite complex. To solve them one needs
to know the Hermite–Fourier coefficients for the corresponding unnormalized filters.
Computation of the latter was not discussed in [28].

The S-system (2.6) was introduced by Mikulevicius and Rozovskii [30, 31]. The
upper bound cecttN+1/(N + 1)! on the error of the Nth-order approximation to (1.3)
was obtained in [30]. Recently, Budhiraja and Kallianpur [5] developed a different
WCE-type approximation of the unnormalized filtering density using the Haar-type
basis. They also established an upper bound on the error of truncation with respect
to the stochastic and deterministic bases.

2. Main results. Let (Ω,F ,P) be a probability space and w(t) be an r-dimensional
Brownian motion on the space. Let x(t) be a d-dimensional (unobservable) signal pro-
cess and y(t) be the r-dimensional observation process given by

y(t) =
∫ t

0
h(x(s))ds+ w(t), 0 ≤ t ≤ T,(2.1)

where h = (hl)1≤l≤r is an r-dimensional vector function on Rd. We assume in addition
that the signal x(t) is a diffusion Markov process of the form1

dxi(t) = bi(x(t))dt+ σij(x(t))dw̃j(t), 0 < t ≤ T,
x(0) = x0,

(2.2)

where b = (bi)1≤i≤d is a d-dimensional vector function on Rd, σ = (σij)1≤i≤d, 1≤j≤d1

is a d×d1 dimensional matrix function on Rd, and w̃ = (w̃i)1≤i≤d1 is a d1-dimensional
Brownian motion on (Ω,F ,P).

The following is assumed about the model (2.1), (2.2):
(A1) the functions b, σ, and h are infinitely differentiable and bounded with all

derivatives;
(A2) the processes w and w̃ are independent;
(A3) the random vector x0 is independent of both w and w̃ and has density2

p(x) ∈ Hn for n = 0, 1, 2, . . . .
(Then by the Sobolev embedding theorem, p(x) is also in Cn

b for any n.) Some of these
assumptions can be weakened, and we will discuss them at the end of this section.

Let Fyt be the σ-algebra generated by y(s), s ≤ t. Denote

ρ(t) = exp
{
−
∫ t

0
hl(x(s))dwl(s)− 1

2

r∑
l=1

∫ t

0
|hl(x(s))|2ds

}
.

1When the sum is finite, we assume summation over repeated indices and omit the
∑

sign.
2Here and below Hn is the Sobolev space Wn

2 (Rd) (see, e.g., [25]), and Cn
b is the space of n

times continuously differentiable on Rd functions bounded with all the derivatives.
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It is well known (see, e.g., [27] or [19]) that the measure P̃ defined by dP̃ = ρ(T )dP is
a probability measure on (Ω,F) with the following properties:

(i) on the reference probability space (Ω,F , P̃), y(·) is a Brownian motion inde-
pendent of x(·);

(ii) the optimal filter f̂(x(t)) = E[f(x(t))|Fyt ] is given by

f̂(x(t)) =
Ẽ[f(x(t))ρ(t)−1|Fyt ]

Ẽ[ρ(t)−1|Fyt ]
,(2.3)

where Ẽ is the expectation with respect to measure P̃. If assumptions (A1)–(A3)
hold, the unnormalized filtering measure Φt(dx) = Ẽ[1{x(t)∈dx}ρ(t)−1|Fyt ] admits the
density u(t, x) = Φt(dx)/dx, called the UFD, which is a solution of the Zakai equation

du(t, x) = L∗u(t, x)dt+ hl(x)u(t, x)dyl(t),(2.4)

where L∗u := 1
2

∂2

∂xi∂xj
((σσ∗)iju)− ∂

∂xi
(biu) and such that for every n ∈ N

Ẽ supt≤T ||u(t, ·)||2Cn
b
<∞,

Ẽ supt≤T ||u(t, ·)||2Hn <∞.

Using the UFD u(t, x), one can rewrite (2.3) in the form (1.1).
DEFINITION. A collection α = (αlk)1≤l≤r, k≥1 of nonnegative integers is called an

r-dimensional multiindex if only finitely many of αlk are different from zero.
The set of all r-dimensional multiindices will be denoted by J . For α ∈ J we use

the following definitions:
|α| :=

∑
l,k α

k
l , length of α;

d(α) := max{k ≥ 1 : αlk > 0 for some 1 ≤ l ≤ r}, order of α.
We also write α! =

∏
k,l(α

l
k!).

Let us fix an arbitrary orthonormal system {mk} = {mk(s)}k≥1 in the space
L2([0, t]) of square integrable functions on [0, t] and set

ξk,l =
∫ t

0
mk(s)dyl(s).

Note that due to property (i) of the measure P̃, ξk,l are independent Gaussian random
variables with zero mean and unit variance.

Let Hn be the nth Hermite polynomial defined by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2.(2.5)

It is well known (see, e.g., [7] or Theorem A.1) that the collectionξα :=
∏
k,l

Hαlk
(ξk,l)√
αlk!

 , α ∈ J


is a complete orthonormal system (CONS) in L2(Ω,Fyt , P̃).

To illustrate how the system is constructed, consider the case r = 1. Then α is
a multiindex of the form (α1, α2, . . . ). If |α| = 0 (i.e., α = (0, 0, . . . )), then obviously
ξα ≡ 1.
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If |α| = 1, then the multiindex α is of the form (0, . . . , 0, 1, 0, . . . ) (i.e., αi = 1,
αk = 0, k 6= i). In this case, ξα =

∫ t
0 mi(s)dy(s).

Similarly, if |α| = 2, then α is of either the form

(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . )

(if i < j and αi = αj = 1, αk = 0, k 6= i, j) or the form (0, . . . , 0, 2, 0, . . . ) (if i = j).
For such α we have

ξα =
(∫ t

0
mi(s)dy(s)

)(∫ t

0
mj(s)dy(s)

)
in the first case,

ξα =
1√
2

[( ∫ t

0
mi(s)dy(s)

)2
− 1
]

in the second case, and so on. See also Remark A.2.
First, we will focus on the expansion of the UFD in the Wick polynomials ξα.

To determine the coefficients of the expansion we consider the following system of
deterministic PDEs:

∂ϕα(s, x)
∂s

= L∗ϕα(s, x) +
∑
k,l α

l
kmk(s)hl(x)ϕα(k,l)(s, x), 0 < s ≤ t,

ϕα(0, x) = p(x)1{|α|=0},
(2.6)

where α=(αlk)1≤l≤r, k≥1∈J and α(i, j) stands for the multiindex α̃ = (α̃lk)1≤l≤r, k≥1
with

α̃lk =

{
αlk if k 6= i or l 6= j or both,
max(0, αji − 1) if k = i and l = j.

(2.7)

This system is recursive in |α|: once we know the functions ϕα for all α of length
|α| = k, we can compute all ϕα for |α| = k + 1. To illustrate the idea, again consider
the case r = 1. Let us write ϕ0 for the ϕα with α = (0, 0, . . . , 0, . . . ) (|α| = 0). Then
ϕ0(s, x) satisfies the forward Kolmogorov equation corresponding to the state process:

∂ϕ0(s, x)
∂s

= L∗ϕ0(s, x),

ϕ0(0, x) = p(x).

If |α| = 1 with αi = 1 and we write ϕi for ϕα with this α, then the corresponding
equation in (2.6) becomes

∂ϕi(s, x)
∂s

= L∗ϕi(s, x) +mi(s)h(x)ϕ0(s, x),

ϕi(0, x) = 0.

For |α| = 2, the corresponding function ϕij , i ≤ j, satisfies the equation

∂ϕij(s, x)
∂s

= L∗ϕij(s, x) +mi(s)h(x)ϕj(s, x) +mj(s)h(x)ϕi(s, x),

ϕij(0, x) = 0,

and so on.
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Under assumptions (A1) and (A3), system (2.6) has a unique smooth solution
(see Proposition A.1 for details).

Our approach is based on the following expansion of the UFD.
THEOREM 2.1 (Mikulevicius and Rozovskii [30, 31]). Assume (A1)–(A3). Then

for each x ∈ Rd the UFD is given by

u(t, x) =
∑
α∈J

1√
α!
ϕα(t, x)ξα (P− a.s.).(2.8)

This series converges in L2(Ω, P̃), and L1(Ω,P), and the following Parseval’s
equality holds:

Ẽ|u(t, x)|2 =
∑
α∈J

1
α!
|ϕα(t, x)|2.(2.9)

Proof of this theorem is given in the appendix.
For the computational purposes one needs to truncate the sum in the expansion

of u. This sum is “double infinite.” Writing

u(t, x) =
∞∑
k=0

∑
|α|=k

1√
α!
ϕα(t, x)ξα,(2.10)

one can see that for k ≥ 1 there are infinitely many multiindices α with |α| = k. To
make it finite, we have to bound the length |α| of α and also the order d(α) of α: if
d(α) ≤ n, then there are at most (nr)k multiindices α with |α| = k.

Recall that if α = (αlk)1≤l≤r, k≥1, then αlk defines the degree of the Hermite
polynomial of

∫ t
0 mk(s)dyl(s) used in the construction of ξα. If d(α) ≤ n, then αlk = 0

for all k > n, so the truncation of the order of α is equivalent to keeping only the first
n elements of the (deterministic) basis {mk(s)}k≥1.

On the other hand, by restricting the length of α, we eliminate a number of
elements of the stochastic basis {ξα}, which are otherwise available with the retained
collection of {mk}.

Thus, restriction of the order of α makes the inner sum in (2.10) finite and is
equivalent to the truncation of the deterministic basis {mk}, while restriction of the
length of α makes the outer sum in (2.10) finite and is equivalent to the truncation
of the stochastic basis ξα.

The following theorem gives the upper bound on the error that one makes by
doing both truncations for a particular choice of the basis {mk}.

THEOREM 2.2. Suppose that assumptions (A1)–(A3) hold and the deterministic
basis {mk} is chosen as follows:

m1(s) =
1√
t
, mk(s) =

√
2
t

cos
(π(k − 1)s

t

)
, k > 1, 0 ≤ s ≤ t.

Write JnN = {α ∈ J : |α| ≤ N, d(α) ≤ n} and define

unN (t, x) :=
∑
α∈JnN

1√
α!
ϕα(t, x)ξα.(2.11)

Then

Ẽ||unN (t, ·)− u(t, ·)||2L2
≤ BeBt

( (h0t)N+1

(N + 1)!
||p||2L2

+
t3

n
||p||2H2

)
,(2.12)
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sup
x∈Rd

Ẽ|unN (t, x)− u(t, x)|2 ≤ CeCt
( (h0t)N+1

(N + 1)!
||p||2C0

b
+
t3

n
||p||2C2

b

)
.(2.13)

Constants B and C depend only on the coefficients b, σ, and h of the model and
h0 :=

∑r
l=1 supx∈Rd |hl(x)|2.

This and the following theorems will be proven in section 3.
Remark 2.1. For different k and l, random variables

∫ t
0 mk(s)dyl(s), which

make the stochastic basis ξα, are idependent and identically distributed N (0, 1) under
measure P̃ for any CONS {mk}. This suggests that the part of the error due to the
truncation in the length of α should be independent of the choice of {mk}, and the
analysis of the proof shows that this is indeed the case. On the other hand, the error
due to the truncation of the order of α crucially depends on the choice of {mk} (see
also Remark 3.1).

Truncations in the order and in the length can be done independently of each
other. If n =∞, we have truncation in length only; this case was studied by Mikule-
vicius and Rozovskii [30].

The Hermite–Fourier coefficients ϕα in (2.10) and (2.11) can be computed off-line,
since system (2.6) does not involve the observation process y. In spite of this important
property, approximation (2.11) does not yet provide an effective numerical algorithm
for computing the UFD. The major reason for this is that the error of truncation may
grow exponentially with t, so we can expect (2.11) to give a good approximation only
for sufficiently small t. The above is a typical problem for approximations of solutions
of parabolic equations (both deterministic and stochastic). One can try to offset
this effect by choosing a higher-order approximation (in our case by taking larger N
and n). However, higher-order numerical schemes are slower and often numerically
unstable. A standard way to overcome the exponential growth of the truncation errors
is to develop a recursive procedure by iterating the one-step approximation.

Remark 2.2. Of course, for the recursive approximation to converge, it is nec-
essary that the error of the one-step approximation converges to zero fast enough as
t ↓ 0. By Theorem 2.2, the short time asymptotics of the error of approximation (2.11)
are of order t if N = 1 and of order t3/2 if N > 1, so it is possible to use (2.11) to
costruct a multistep approximation (Theorem 2.4).

In what follows, we present a recursive version of the expansion (2.8). It will
allow us to modify the corresponding numerical scheme and eliminate the possible
error growth.

Let 0 = t0 < t1 < · · · < tM = T be a uniform partition of the interval [0, T ]
with step ∆ (so that ti = i∆, i = 0, . . . ,M). Let {mi

k} = {mi
k(s)}k≥1 be a CONS in

L2([ti−1, ti]). We also define random variablesξiα :=
∏
k,l

Hαlk
(ξik,l)√
αlk!

 , α ∈ J

 ,(2.14)

where ξik,l=
∫ ti
ti−1

mi
k(s)dyl(s) and Hn is the nth Hermite polynomial (2.5).

Consider the following system of equations:

∂ϕiα(s, x, g)
∂s

=L∗ϕiα(s, x, g)+
∑
k,l

αlkm
i
k(s)hl(x)ϕiα(k,l)(s, x, g), ti−1< s≤ ti,

ϕiα(ti−1, x, g) =g(x)1{|α|=0},

(2.15)
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where g(x) is a function to be determined. For each i = 1, . . . ,M this system is similar
to (2.6). The main new feature is that the initial time moment is no longer zero and
we now allow that an arbitrary initial condition g may be different for different i; this
dependence on g is indicated explicitly in the arguments of ϕ.

The following is the recursive version of Theorem 2.1.
THEOREM 2.3. Define u(t0, x) := p(x). Then for each x ∈ Rd and each ti, i =

1, . . . ,M , the UFD is given by

u(ti, x) =
∑
α∈J

1√
α!
ϕiα(ti, x, u(ti−1, ·))ξiα, i = 1, . . . ,M (P − a.s.).(2.16)

This series converges in L2(Ω, P̃) and L1(Ω,P), and the following Parseval’s
equality holds:

Ẽ|u(ti, x)|2 =
∑
α∈J

1
α!

Ẽ|ϕα(t, x, u(ti−1, ·))|2, i = 1, . . . ,M.

This result follows easily from Theorem 2.1, since (2.4) is linear with a unique
solution, and random variables u(ti−1, x) and ξiα are independent under measure P̃.

Again, for computational purposes, we need to perform truncations in (2.16). For
that purpose, as in Theorem 2.2, we will use the special basis {mi

k}:

mi
k(s) = mk(s− ti−1), ti−1 ≤ s ≤ ti,

m1(s) =
1√
∆
, mk(s) =

√
2
∆

cos
(π(k − 1)s

∆

)
, k > 1, 0 ≤ s ≤ ∆,

mk(s) = 0, k ≥ 1, s /∈ [0,∆].

(2.17)

THEOREM 2.4. Suppose that basis {mi
k} is given by (2.17) and assumptions (A1)–

(A3) hold. Define unN (t0, x) := p(x) and by induction

unN (ti, x) :=
∑
α∈JnN

1√
α!
ϕiα(∆, x)ξiα,(2.18)

where JnN = {α ∈ J : |α| ≤ N, d(α) ≤ n} and ϕiα are solutions of the system

∂ϕiα(s, x)
∂s

= L∗ϕiα(s, x) +
∑
k,l α

l
kmk(s)hl(x)ϕiα(k,l)(s, x), 0 < s ≤ ∆,

ϕiα(0, x) = unN (ti−1, x)1{|α|=0}.

(2.19)

Then

max
1≤i≤M

Ẽ||unN (ti, ·)− u(ti, ·)||2L2
≤ BeBT

( (h0∆)N

(N + 1)!
||p||2L2

+
∆2

n
||p||2H2

)
,(2.20)

max
1≤i≤M

sup
x∈Rd

Ẽ|unN (ti, x)− u(ti, x)|2 ≤ CeCT
( (h0∆)N

(N + 1)!
||p||2C0

b
+

∆2

n
||p||2C2

b

)
.

(2.21)

Constants B and C depend only on the coefficients b, σ, and h of the model and
h0 :=

∑r
l=1 supx∈Rd |hl(x)|2.3

3Of course, B and C here are, in general, different from constants B and C in Theorem 2.2.
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The sequence {unN (ti, x)}1≤i≤M gives an approximation to the UFD at all points
of the time grid. This is a flexible and comparatively universal approximation. Many
well-known numerical schemes for the Zakai equation can be obtained as particular
cases of (2.18). In section 4 we will demonstrate this for two well-known algorithms:
the explicit Euler scheme and the splitting-up method.

Remark 2.3. Analysis of the proofs of Theorems 2.2–2.4 shows that the wavelet
type structure of our “global” basis M = ∪Mi=1 ∪∞k=1 {mi

k} is of central importance.
Specifically the following two properties of the basis are crucial:
(1) The global basis M is a direct sum of “local” bases Mi = ∪∞k=1{mi

k} with
nonoverlapping supports (Theorems 2.3–2.5).

(2) The functions mi
k(s) are smooth and

∫ ti
ti−1

mi
k(s)ds = 0 for k ≥ 2, i =

1, . . . ,M (see Theorem 2.4).
The recursive version (2.18) of the spectral approximation of the unnormalized

filtering density has one important disadvantage as compared to the one-step approx-
imation (2.11). Indeed, to compute unN (ti, x) we have to solve a certain number of
equations from system (2.19). Although these equations are the same on every time
interval and their coefficients do not involve the observation process y, the initial con-
dition for the first equation of the system, unN (ti−1, x), does. This fact of course rules
out off-line computation of the Fourier–Hermite coefficients ϕα(t, x), which is one of
the important objectives of our study. For this reason, we present below a modifica-
tion of the expansion (2.18) which admits off-line computations. Loosely speaking,
the idea is to expand the initial condition for the first equation of (2.19) in a Fourier
series as a function of spatial variable x, unN (ti−1, x) =

∑
l clel(x), and to exploit the

obvious relation

ϕα(ti, x, u(ti−1, x)) =
∑
l

clϕα(ti, x, el).

Note that the functions ϕα(ti, x, el) can be computed off-line.
THEOREM 2.5. Let {el} = {el(x)}l≥1, el ∈ ∩nHn, be a CONS in L2(Rd) and

(·, ·) be the inner product in that space. Suppose that assumptions (A1)–(A3) hold and
{mi

k} are given by (2.17). Consider the following system of equations:

∂ϕα(s, x, g)
∂s

= L∗ϕα(s, x, g) +
∑
k,l

αlkmk(s)hl(x)ϕα(k,l)(s, x, g), 0 < s ≤ ∆,

ϕα(0, x, g) = g(x)1{|α|=0}.

(2.22)

Define qlαk := (ϕα(∆, ·, ek), el) and then by induction

ψl(0, N, n) := (p, el),

ψl(i,N, n) :=
∑
α∈JnN

∑
k

1√
α!
ψk(i− 1, N, n)qlαkξ

i
α.(2.23)

Then

unN (ti, x) =
∑
l

ψl(i,N, n)el(x), 0 ≤ i ≤M (P − a.s.).(2.24)

Now we can describe an approximation algorithm which stems from Theorem 2.5.
(1) Before the observations become available, (a) choose a finite collection

{el}1≤l≤κ;
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(b) compute ψl(0, N, n, κ) := (p, el), 1 ≤ l ≤ κ, where p is the initial density;
(c) for all α ∈ JnN and l = 1, . . . , κ compute ϕα(∆, x, el);
(d) compute qlαk = (ϕα(∆, ·, ek), el).
(2) On the ith step, when the observations become available,
(a) compute ξiα;
(b) compute ψl(i,N, n, κ) :=

∑
α∈JnN

∑κ
k=1(1/

√
α!)ψk(i− 1, N, n, κ)qlαkξ

i
α for l =

1, . . . , κ ;
(c) compute

un,κN (ti, x) :=
κ∑
l=1

ψl(i,N, n, κ)el(x).(2.25)

.
We refer to this algorithm as the spectral separating scheme (S3).
Remark 2.4. The amount of on-line operations and the amount of information

that has to be stored in each step of S3 do not depend on the number of steps to be
performed. Also in contrast to the standard time-discretization schemes for the Zakai
equation, S3 does not require computing of the UFD at all the grid points ti, i =
1, . . . ,M . Specifically, step 2(c) of the algorithm can be omitted on any subset of time
grid points (e.g., everywhere except the final point tM ). Note that computing of (2.25)
is time consuming since it has to be done at all points of the space mesh.

The truncation of the basis {el} assumed in the above algorithm is necessary for
computational reasons. Obviously it adds an extra error to (2.20). It is also clear
that the error depends on the choice of the basis {el} and is very much related to the
particular numerical scheme used to solve (2.22).

It is beyond the scope of this work to study the above questions in detail, so we
restrict ourselves to one particular case.

THEOREM 2.6. Suppose that {el} is the Hermite basis in L2(Rd) [16].
Let 0 = t0 < · · · < tM = T be a uniform partition of [0, T ] and unN (ti, x) and

un,κN (ti, x) be defined by (2.18) and (2.25), respectively. Assume that (A1)–(A3) hold
and in addition the initial density p and all its derivatives decay faster than any
negative power of |x| as |x| → ∞.

Then for any positive integer γ there is a real number Cγ > 0 depending only on
γ and the parameters σ, b, p, and d of the model such that

max
1≤i≤M

√
Ẽ||unN (ti, ·)− un,κN (ti, ·)||2L2

≤ MCγ(eCγT − 1)
Tκγ−1/2 .(2.26)

This theorem shows that for sufficiently smooth initial condition p and with ap-
propriate choice of the basis {el}, the error due to the truncation of the basis decays
faster than any power of κ; i.e., our approximation is of a “spectral quality” (see, e.g.,
[15]).

Remark 2.5. The overall error of approximation for the spectral separating
scheme follows from (2.20) and (2.26) and is given by

max
1≤i≤M

Ẽ||u(ti, ·)− un,κN (ti, ·)||2L2
≤ C

( (h0∆)N

(N + 1)!
+

∆2

n
+

C(γ)
∆2κ2γ−1

)
,(2.27)

where C is a constant depending on the parameters of the model (including the initial
density p and the length of the time interval T ) and it is assumed that the Wiener
integrals

∫ ti
ti−1

mk(t)dyl(t) are computed exactly. If n = 1, then only increments of the
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observation process are needed at each step and the computation of the integrals does
not introduce any additional error. For n > 1, the integrals

∫ ti
ti−1

mk(t)dyl(t), k > 1,
can be reduced to Riemann integrals and then approximated by subdividing the interval
[ti−1, ti] with some step δ << ∆. The error of the corresponding approximation will
depend on the new asymptotic parameter δ. Still, formula (2.27) implies that, in the
limit lim∆→0 limκ→∞, the schemes with n = 1 and n > 1 have the same rate of
convergence.

Remark 2.6. Another approximation based on the Haar basis was proposed by
Budhiraja and Kallianpur [5]. The approximation in [5] converges when N ↑ ∞ and
∆ ↓ 0. For computational purposes, though, it can be difficult to take arbitrarily large
values of N because of the growing complexity and possible numerical instability. On
the other hand, it follows from (2.27) that the spectral separating scheme converges in
the limit lim∆→0 limκ→∞ for every N ≥ 1 and the rate of convergence is the same for
all N ≥ 2.

We remark that Theorems 2.1–2.6 can be extended to the case of time-dependent
coefficients. Theorems 2.1–2.6 hold if the coefficients belong to the Hölder space
C2+α(Rd) for each t. The generalization is straightforward yet a bit cumbersome.
Theorems 2.1–2.2 can be carried over to the case of correlated noises without many
changes in the proofs [29, 31]. On the other hand the error estimates in the latter
case are more delicate.

By no means is our approach a universal one. For example, it requires advanced
knowledge of the parameters of the system, which are not always readily available.
Also, it is not clear if it could be extended to the case of a non-Markov state process.

3. Proofs. In this section we will prove Theorems 2.2, 2.4, and 2.5. Everywhere
C stands for a positive constant depending only on the parameters of the system; its
actual value may be different in different places.

We introduce the following notation:
{Ts}s≥0, the semigroup generated by the operator L∗;
sk, the the ordered set (s1, . . . , sk); dsk := ds1 . . . dsk;
F (t; sk;x) := Tt−skhTsk−sk−1 . . . hTs1p(x), k ≥ 1;∫ (k)(· · · )dsk :=

∫ t
0

∫ sk
0 . . .

∫ s2
0 (· · · )ds1 . . . dsk.

When r = 1, each multiindex α = (α1, α2, . . . ) of length |α| = k can be identified
with a vector Kα = (iα1 , . . . , i

α
k ), where iα1 ≤ iα2 ≤ · · · ≤ iαk . The first entry iα1 of

Kα is the number of the first nonzero element of α. The second entry iα2 is equal
to iα1 if that first nonzero element αiα1 is greater than 1; otherwise iα2 is the number
of the second nonzero element and so on. As a result, if αj > 0, then exactly αj
entries of the vector Kα are equal to j. We will call this vector the characteristic
set of multiindex α. For example, if α = (0, 1, 0, 2, 3, 0, . . . ), then nonzero elements
are α2 = 1, α4 = 2, α5 = 3, and the characteristic set is (2, 4, 4, 5, 5, 5). A similar
construction is possible for general r > 1. In the future, when there is no danger of
confusion, we will omit the upper index in i (i.e., write ij rather than iαj ).

Let Pk be the permutation group of the set {1, . . . , k}. For a given α ∈ J with
|α| = k and the characteristic set (i1, . . . , ik) (r = 1) define

Eα(sk) :=
∑
σ∈Pk

mi1(sσ(1)) · · ·mik(sσ(k)).

Proof of Theorem 2.2. We will prove inequality (2.12); the other can be proven
in a similar way.
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Set

uN (t, x) :=
∑
|α|≤N

ϕα(t, x)ξα√
α!

.

Suppose that we know that

Ẽ||u(t, ·)− uN (t, ·)||2L2
≤ (h0t)N+1

(N + 1)!
eCt||p||2L2

(3.1)

and

Ẽ||uN (t, ·)− unN (t, ·)||2L2
≤ C t

3

n
eCt||p||2H2 .(3.2)

Then (2.12) will follow immediately from the inequality (a+ b)2 ≤ 2(a2 + b2).
The problem is thus to prove (3.1) and (3.2). To simplify the presentation, we

assume that r = 1.
Proof of (3.1). We will use the following results:∑

|α|=k

ϕ2
α(t, x)
α!

=
∫ (k)

|F (t; sk;x)|2dsk,(3.3)

where ϕα is the solution of (2.6) with any CONS {mk}, and

||Tsf ||2L2
≤ eCs||f ||2L2

.(3.4)

The first equality is established in the appendix, Proposition A.1 (see also [30]);
inequality (3.4) is a standard fact (see [25]).

Since ξα are uncorrelated under P̃, we have

Ẽ|u(t, x)− uN (t, x)|2 =
∑
k>N

∑
|α|=k

ϕ2
α(t, x)
α!

=
∑
k>N

∫ (k)

|F (t; sk;x)|2dsk.

Then by the Fubini theorem

Ẽ||u(t, ·)− uN (t, ·)||2L2
=
∑
k>N

∫ (k) (∫
Rd

|F (t; sk;x)|2dx
)
dsk

=
∑
k>N

∫ (k)

||F (t, sk, ·)||2L2
dsk.

Since h is bounded, it follows from the definition of F and (3.4) that

||F (t; sk; ·)||2L2
≤ h0e

C(t−sk)||Tsk−sk−1h . . . hTs1p||2L2

≤ · · · ≤ hk0et−sk+sk−···+s2−s1+s1 ||p||2L2
= hk0e

Ct||p||2L2
.

Finally, from
∫ (k)

dsk = tk/k!, we conclude that

Ẽ||u(t, ·)− uN (t, ·)||2L2
≤ eCt

∑
k>N

(th0)k

k!

≤ (th0)N+1

(N + 1)!
e(C+h0)t,

and (3.1) follows. Note that it holds for any CONS {mk}.
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Proof of (3.2). If α is a multiindex with |α| = k and the characteristic set
(iα1 , . . . , i

α
k ), then iαk = d(α), the order of α, and so the set JnN can be described

as {α ∈ J : |α| ≤ N ; iα|α| ≤ n}. Thus

Ẽ|unN (t, x)− uN (t, x)|2 =
∞∑

l=n+1

N∑
k=1

∑
|α|=k;iαk=l

ϕ2
α(t, x)
α!

.

The problem is thus to estimate
∑∞
l=n+1

∑N
k=1

∑
|α|=k;iαk=l

ϕ2
α(t,x)
α! .

By Proposition A.1 (see also [30]) the corresponding solution ϕα of (2.6) can be
written as

ϕα(t, x) =
∫ (k)

F (t; sk;x)Eα(sk)dsk.(3.5)

Note that we can also write

Eα(sk) =
k∑
j=1

mik(sj)Eα(ik)(skj ),

where skj denotes the same set (s1, . . . , sk) with omitted sj (e.g., sk1 = (s2, . . . , sk))
and α(ik) is the multiindex with this characteristic set (i1, . . . , ik−1) (cf. (2.7); recall
that r = 1).

This allows us to write (3.5) as

ϕα(t, x) =
k∑
j=1

∫ (k−1) (∫ sj+1

sj−1

F (t; sk;x)mik(sj)dsj
)
Eα(ik)(skj )dskj ,(3.6)

where s0 := 0; sk+1 := t. (We just change the order of integration in the multiple
integral.)

Denote

Mk(s) :=
√

2t
π(k − 1)

sin
(π(k − 1)

t
s
)
, k > 1, 0 ≤ s ≤ t,

and also Fj := ∂F (t;sk;x)
∂sj

. Then, as long as ik = l > 1, we can integrate by parts the
inner integral on the right of (3.6) to get∫ sj+1

sj−1

F (t; sk;x)ml(sj)dsj

= F (t; sk;x)Ml(sj)
∣∣∣sj=sj+1

sj=sj−1

−
∫ sj+1

sj−1

Fj(t, sk, x)Ml(sj)dsj .

For each j, let us rename the remaining variables skj in (3.6) as follows: ti := si, i ≤
j − 1; ti := si+1, i > j − 1, or, symbolically, tk−1 := skj . We will set t0 := 0, tk := t

and denote by tk−1,j , j = 1, . . . , k − 1, the set tk−1 in which tj is repeated twice
(e.g., tk−1,1 = (t1, t1, . . . , tk−1), etc.); also tk−1,0 := (t0, t1, t2, . . . , tk−1), tk−1,k :=
(t1, . . . , tk−1, tk).
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Then

F (t; sk;x)Ml(sj)
∣∣∣sj=sj+1

sj=sj−1

= F (t; tk−1,j ;x)Ml(tj)− F (t; tk−1,j−1;x)Ml(tj−1), j = 1, . . . , k.

As a result, since Ml(t0) = Ml(tk) = 0 (and this is the only place where the choice
of {mk} really makes the difference), all these terms will cancel out as we sum over
j. What remains can be written as∫ (k−1)

fl(t; tk−1;x)Eα(l)(tk−1)dtk−1,

where

fl(t; tk−1;x) = −
∫ t1

0
F1(t; τ, tk−1;x)Ml(τ)dτ

−
k−1∑
j=2

∫ tj

tj−1

Fj(t; . . . , tj−1, τ, tj , . . . ;x)Ml(τ)dτ

−
∫ tk

tk−1

Fk(t; tk−1, τ ;x)Ml(τ)dτ.

Then, since |α(i|α|)| = |α| − 1, α! ≥ α(i|α|)!, we get

∑
|α|=k;iαk=l

ϕ2
α(t, x)
α!

=
∑

|α|=k;iαk=l

( 1√
α!

∫ (k−1)

fl(t; tk−1;x)Eα(l)(tk−1)dtk−1
)2

≤
∑

|β|=k−1

( 1√
β!

∫ (k−1)

fl(t; tk−1;x)Eβ(tk−1)dtk−1
)2
,

and arguments similar to those used in the proof of Proposition A.1 show that the
last expression is equal to ∫ (k−1)

|fl(t; tk−1;x)|2dtk−1.(3.7)

Direct computations yield

Fj(t, sk, x) = Tt−skh . . . Tsj+1−sjhL∗Tsj−sj−1 . . . Ts1p(x)
−Tt−skh . . .L∗Tsj+1−sjhTsj−sj−1 . . . Ts1p(x).

Since L∗ is a continuous operator from H2 to L2, it follows from (3.4) and a
similar inequality for H2-norms that

||Fj(t; sk; ·)||2L2
≤ eCtCk||p||2H2 .

Then the definition of fl and obvious inequalities

(a1 + · · ·+ ak)2 ≤ k(a2
1 + · · ·+ a2

k)
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and (∫ x

0
f(y)dy

)2

≤ x
∫ x

0
(f(y))2dy

imply

||fl(t; tk−1; ·)||2L2
≤ kCkeCt||p||2H2t

∫ t

0
(Ml(s))2ds

≤ kCkt3eCt

(l − 1)2 ||p||
2
H2 ;

so, since
∫ (k−1)

dtk−1 = tk−1/(k − 1)!, (3.7) and the last inequality yield

∑
|α|=k,iαk=l

||ϕ2
α(t, ·)||2L2

α!
≤ eCt||p||2H2t3

kCk

(l − 1)2(k − 1)!
.

Now we collect everything to get

Ẽ||uN (t, ·)− unN (t, ·)||2L2
=
∑
l≥n+1

N∑
k=1

∑
|α|=k;iαk=l

ϕ2
α(t, x)
α!

≤ Ct3eCt
(∑
k≥1

k(Ct)k−1

(k − 1)!

)∑
l≥n

1
l2
≤ C t

3

n
eCt||p||2H2 .

This completes the proof of (3.2) and the theorem as a whole.
Proof of Theorem 2.4. We again prove only the first inequality.
First of all notice that time homogeneity of (2.15) and the special choice of {mi

k}
as mi

k(s) = mk(s− ti−1) imply

ϕiα(∆, x) = ϕiα(ti, x, u(ti−1, ·))

(see (2.15) and (2.19)). Then by Fubini’s theorem and Theorem 2.3 and due to
linearity of system (2.15),

Ẽ||unN (ti, ·)−u(ti, ·)||2L2
=
∑
α∈JnN

1
α!

Ẽ||ϕiα(ti, ·, unN (ti−1, ·)− u(ti−1, ·))||2L2

+
∑
α/∈JnN

1
α!

Ẽ||ϕiα(ti, ·, u(ti−1, ·))||2L2

≤
∑
α∈J

1
α!

Ẽ||ϕiα(ti, ·, unN (ti−1, ·)−u(ti−1, ·))||2L2

+
∑
α/∈JnN

1
α!

Ẽ||ϕiα(ti, ·, u(ti−1, ·))||2L2
.

(3.8)

By Theorem 2.3 and linearity of equation (2.4), we have∑
α∈J

1
α!

Ẽ||ϕiα(ti, ·, unN (ti−1, ·)− u(ti−1, ·))||2L2

= Ẽ||U(ti, x;unN (ti−1, ·)− u(ti−1, ·))||2L2
,

(3.9)
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where U(t, x;unN (ti−1, ·)− u(ti−1, ·)) is the solution of

dv(t, x) = L∗v(t, x)dt+ hl(x)v(t, x)dyl(t), t ∈ (ti−1, ti],
v(ti−1, x) = unN (ti−1, x)− u(ti−1, x).

It is a standard fact that under assumptions (A1) and (A3),

Ẽ||U(ti, ·;unN (ti−1, ·)− u(ti−1, ·))||2L2
≤ eC∆Ẽ||unN (ti−1, ·)− u(ti−1, ·)||2L2

(3.10)

(see, e.g., [34]).
Repeating the same arguments as in the proof of Theorem 2.2, one can check that∑

α/∈JnN

1
α!

Ẽ||ϕiα(ti, ·, u(ti−1, ·))||2L2

≤ CeC∆
( (h0∆)N+1

(N + 1)!
Ẽ||u(ti−1, ·)||2L2

+
∆3

n
Ẽ||u(ti−1, ·)||2H2

)
.

(3.11)

Finally, we use the inequalities

Ẽ||u(ti−1, ·)||2L2
≤ eCT ||p||2L2

(3.12)

and

Ẽ||u(ti−1, ·)||2H2 ≤ eCT ||p||2H2 .(3.13)

These inequalities are similar to (3.10) and can also be found in [34].
If we now denote Ẽ||unN (ti, ·)− u(ti, ·)||2L2

by εi, then, combining (3.8)–(3.13), we
arrive at

εi ≤
(
εi−1 + CeCT

( (h0∆)N+1

(N + 1)!
||p||2L2

+
∆3

n
Ẽ||p||2H2

))
eC∆,

and since ε0 = 0, the statement of the theorem follows from the discrete Gronwall
lemma.

Proof of Theorem 2.5. By construction, unN (ti, ·) ∈ L2(Rd) (P− a.s.), so

unN (ti, x) =
∑
l≥1

ψl(i,N, n)el(x) (P− a.s.)

with some ψl(i,N, n). Then all we have to do is to establish (2.23), which means∑
α∈JnN

∑
k

1√
α!
ψk(i− 1, N, n)qlαkξ

i
α = (unN (ti, ·), el).(3.14)

We will prove this by induction. For i = 0, ψl(0, N, n) = (unN (t0, ·), el) by defini-
tion. Assume that unN (ti−1, x) =

∑
l ψl(i− 1, N, n)el(x) for some i ≥ 1.

The proof of Theorem 2.2 shows that operator g 7→ ϕα(ti, ·, g) is continuous and
linear from L2(Rd) to L2(Rd) for all α ∈ J , where ϕα(ti, ·, g) is the solution of (2.22).
Then ∑

k

ψk(i− 1, N, n)qlαk =
∑
k

ψk(i− 1, N, n)(ϕα(∆, ·, ek), el)

=
(
ϕα

(
∆, ·,

∑
k

ψk(i− 1, N, n)ek
)
, el

)
,
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and by an induction assumption the right-hand side of the above formula is equal to

(ϕα(∆, ·, unN (ti−1, ·)), el).

On the other hand, comparing (2.19) and (2.22) we conclude that

ϕα(∆, x, unN (ti−1, ·)) = ϕiα(∆, x).

As a result,∑
α∈JnN

∑
k

1√
α!
ψk(i− 1, N, n)qlαkξ

i
α =

( ∑
α∈JnN

1√
α!
ϕiα(ti, ·, unN (ti−1, ·))ξiα, el

)
,

and by (2.18) this is equal to (unN (ti, ·), el). This completes the proof of (3.14) and
the theorem as a whole.

Remark 3.1. Analysis of the proof shows that the result (with obvious modifica-
tions) is also true for the exact solution u(ti, x).

Proof of Theorem 2.6. In what follows, Cγ denotes a constant depending on γ and
(maybe) the parameters of the model. As before, C is a constant depending only on
the parametes of the model. Values of C and Cγ may be different in different places.

If d = 1, then

el(x) =
1√

(2π)1/2l!
e−x

2/4Hl(x),(3.15)

where Hl is the lth Hermite polynomial (2.5) [15, 16].
For d > 1, the elements of the basis are

el(x1, . . . , xd) = el1(x1) . . . eld(xd),

where li ≥ 0 and eli are given by (3.15), i = 1, . . . , d [16]. The system {el} is thus
indexed by the set of d-dimensional multiindices l = (l1, . . . , ld) ordered in some
natural way. We will say that l ≤ κ if max1≤i≤d li ≤ κ.

To simplify the presentation, we assume from now on that d = 2. Then l = (l1, l2).
Direct computations show that eli satisfies

Aieli = (li + 1)eli , i = 1, 2,

where operator Ai is defined by

Aif(x) = −∂
2f(x)
∂x2

i

+
2 + x2

i

4
f(x).

As a result, A2A1el(x1, x2) = (l1 + 1)A2(el1(x1)el2(x2)) = (l1 + 1)(l2 + 1)el(x1, x2).
This means that if f and all its derivative decay fast enough, then

|(f, el)| ≤
||A1A2f ||L2

(l1 + 1)(l2 + 1)
≤ · · · ≤ ||(A1A2)γf ||L2

(l1 + 1)γ(l2 + 1)γ
.(3.16)

If Hs(r), s, r ∈ R, is the weighted Sobolev space W s
2 (r,R2) ([34]; see also [16]),

then definition of Ai implies that

||(A1A2)γf ||L2 ≤ Cγ ||f ||H4γ(4γ),
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and (3.16) becomes

|(f, ek)| ≤
Cγ ||f ||H4γ(4γ)

(l1 + 1)γ(l2 + 1)γ
.(3.17)

Introduce the following notation:

|||f ||| :=
√

Ẽ||f ||2L2
,

εi := |||unN (ti, ·)− un,κN (ti, ·)|||,
Πκ, the L2-orthogonal projection on the subspace generated by el, l ≤ κ,
V n,iN (f), the operator f 7→

∑
α∈JnN

ϕα(∆, ·, f)ξiα; f ∈ L2(Ω,Fyti−1
, P̃) and U i(f) :=

V∞,i∞ . Since V n,iN (f) is the L2(Ω, P̃)-orthogonal projection of U i(f) on the subspace
generated by {ξα, α ∈ JnN},

|||V n,iN (f)||| ≤ |||U i(f)|||.(3.18)

Below we will be dealing with a fixed set (n, i,N) and to simplify notation will write
V instead of V n,iN . We also omit the dot in unN (ti, ·), etc.

Since the coefficients of the model are time independent,

unN (ti) = V (unN (ti−1)), un,κN (ti) = ΠκV (un,κN (ti−1)).

The second equality follows from (2.25), the definition of ψl(i,N, n, κ), and the lin-
earity of the map f 7→ ϕα(∆, f). Then by the triangle inequality

εi ≤ |||ΠκV (unN (ti−1))−ΠκV (un,κN (ti−1))|||
+|||unN (ti)−ΠκunN (ti)|||.

(3.19)

By the definition of Πκ,

|||ΠκV (unN (ti−1))−ΠκV (un,κN (ti−1))|||
≤ |||V (unN (ti−1))− V (un,κN (ti−1))||| ≤ eC∆εi−1,

(3.20)

∆ = ti − ti−1, where the last inequality follows from (3.18) and (3.10).
Under the assumptions of the theorem it is easy to show, using the standard

estimates from [25] or [34], that for any i = 1, . . . ,M, unN (ti) ∈ ∩sHs(r) (P− a.s.) for
any r ∈ R. In addition,

∑
α∈JnN

Ẽ||ϕiα(∆)||2Hγ(γ)

α!
≤ eCγT ||p||2Hγ(γ)(3.21)

for any positive integer γ, where ϕiα(∆) = ϕα(∆, u(ti−1)). As a result, from (2.18),
(3.17), (3.21), and the obvious estimates

∑
j>κ 1/(j+1)γ ≤ Cγ/(κ+1)γ−1 ≤ Cγ/κγ−1

(valid for γ > 1), we conclude that

|||unN (ti−1)−ΠκunN (ti−1)|||2 =
∑
α∈JnN

∑
l>κ

Ẽ(ϕiα(∆), el)2

α!

≤ 2
∑
α∈JnN

( ∑
l1>κ,l2≥0

1
(l1 + 1)2γ(l2 + 1)2γ

) Ẽ||ϕiα(∆)||2H4γ(4γ)

α!

≤ Cγe
CγT

κ2γ−1 ||p||
2
H4γ(4γ).

(3.22)
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Combining (3.19), (3.20), and (3.22), we arrive at

εi ≤ eC∆εi−1 +
Cγe

CγT

κγ−1/2 ||p||H4γ(4γ),

which by the discrete Gronwall lemma implies

εi ≤
Cγ(eCγT − 1)

∆ κγ−1/2 ||p||H4γ(4γ).

Since ∆ = T/M and by assumption ||p||H4γ(4γ) ≤ Cγ , (2.26) follows.

4. Comparison with other algorithms and numerical simulations. The
Wiener chaos approximations (2.8), (2.16) can be viewed as higher-order time-discreti-
zation schemes for the Zakai equation.

For N ≥ 2, the rate of convergence of the Wiener chaos approximation unN is
O(∆), where ∆ is the time step (Theorem 2.4). This is similar to the rates of conver-
gence of the splitting-up algorithm (see [26]) and the implicit Euler–Milstein scheme
(see [18]) for the Zakai equation.

In fact, many well-known time-discretization schemes can be obtained as partic-
ular cases of the Wiener chaos approximation.

One of the simplest is the explicit Euler scheme. Take a uniform partition of the
interval [0, T ] with step ∆. Then the explicit Euler approximation ui(x) to the Zakai
equation is obtained from

u0(x) = p(x), ui(x) = (1 + ∆ · L∗)ui−1(x) +
r∑
l=1

hl(x)ui−1(x)(yl(ti)− yl(ti−1)).

(4.1)

Now we will derive the same result from Theorem 2.4. Take n = N = 1. Then
set J1

1 contains r+1 elements, and on each step we need to solve r+1 equations from
(2.19):

∂ϕi0(s, x)
∂s

= L∗ϕi0(s, x), 0 < s ≤ ∆,

ϕi0(0, x) = u1
1(ti−1, x)

(for |α| = 0);

∂ϕil(s, x)
∂s

= L∗ϕil(s, x) +
∑
l
hl(x)√

∆
ϕi0(s, x), 0 < s ≤ ∆,

ϕil(0, x) = 0, l = 1, . . . , r

(for |α| = 1 with αl1 = 1) and u1
1(t0, x) = p(x).

We solve these equations using the explicit Euler scheme; the (approximate) so-
lutions are then given by

ϕi0(∆, x) = (1 + ∆ · L∗)u1
1(ti−1, x),

ϕil(∆, x) = hl(x)
√

∆u1
1(ti−1, x).

By definition,

ξil =
∫ ti

ti−1

m1(s)dyl(s) =
yl(ti)− yl(ti−1)√

∆
,
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and by Theorem 2.4,

u1
1(ti, x) = ϕi0(∆, x) +

r∑
l=1

ϕil(∆, x)ξil ,

and this, due to the above relations, coincides with (4.1).
Another well-known algorithm for solving the Zakai equation (2.4) is the splitting-

up approximation (see Bensoussan, Glowinski, and Rascanu [4]; Florchinger and
LeGland [12]; etc.). For simplicity, we consider the case r = 1. Take a uniform
partition of [0, T ] with step ∆ and let {Tt} be the semigroup generated by operator
L∗ (or some approximation of that semigroup). Then the splitting-up approximation
ui(x) to u(ti, x) is computed from the recursion

u0(x) = p(x), ui(x) = T∆ exp([y(ti)− y(ti−1)]h− 0.5h2∆)ui−1(x).(4.2)

Let us see how the same result can be obtained from Theorem 2.4. Set n = 1, N =
∞. Then the set JnN consists of multiindices α = (k, 0, 0, . . . ); the corresponding ϕα
will be denoted by ϕk. We need to solve the following system:

∂ϕi0(s, x)
∂s

= L∗ϕi0(s, x), 0 < s ≤ ∆,

ϕi0(0, x) = u1
∞(ti−1, x)

(for |α| = 0);

∂ϕik(s, x)
∂s

= L∗ϕik(s, x) + k h(x)√
∆
ϕik−1(s, x), 0 < s ≤ ∆,

ϕik(0, x) = 0, k ≥ 1

(for |α| = k) and u1
∞(t0, x) = p(x). An approximate solution to this system is given

by

ϕik(t, x) = Tt

( th√
∆

)k
u1
∞(ti−1, ·) (x), k ≥ 0.(4.3)

Indeed, for k = 0, this is the exact solution (if Tt is exact); assuming (4.3) for some
k = n− 1 ≥ 0, we get for k = n

ϕin(t, x) = n

∫ t

0
Tt−s

h√
∆
ϕin−1(s, ·)(x)ds

=
n

∆n/2

∫ t

0
Tt−sh

nTsu
1
∞(ti−1, ·)(x)sn−1ds

≈ n

∆n/2Tth
nu1
∞(ti−1, ·)(x)

∫ t

0
sn−1ds

= Tt

( th√
∆

)n
u1
∞(ti−1, ·) (x),

so (4.3) follows by induction. Note that, if Tt(hf)(x) = hTt(f) for all f(x), it would
be an exact solution.

Clearly, (4.3) implies that

ϕik(∆, x) = T∆(h
√

∆)ku1
∞(ti−1, ·) (x), k ≥ 0.
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It is also clear that

ξik =
1√
k!
Hk

(y(ti)− y(ti−1)√
∆

)
,(4.4)

and then by Theorem 2.4

u1
∞(ti, x) = T∆u

1
∞(ti−1, ·)(x) + T∆

∑
k≥1

1
k!

(h
√

∆)kHk

(y(ti)− y(ti−1)√
∆

)
= T∆ exp([y(ti)− y(ti−1)]h− 0.5h2∆)u1

∞(ti, ·)(x).

(The last equality follows from the well-known expansion

exp(ax− 0.5x2) =
∑
k≥0

1
k!
Hk(a)xk

if we set a = (y(ti)− y(ti−1))/
√

∆, x = h
√

∆.)
An alternative form of the splitting-up approximation, namely,

uo(x)=p(x), ui(x)=exp((y(ti)−y(ti−1))h(x)−0.5|h(x)|2∆)T∆ui−1(·)(x) ,
(4.5)

can be obtained by Theorem 2.4 in the same way.
Next, we present an estimate on the number of on-line operations required by S3

and compare it with a corresponding estimate for the splitting-up method.
We introduce the following parameters: Ns, the number of grid points in the

spatial domain; NJ , the number of elements in JnN ; κ, the number of basis functions
el.

Assume that one needs to compute an approximation to the solution of (2.4) at
moment t = Nτ∆.

To do this using S3, one has to find ψl(i,N, n, κ), i = 1, . . . , Nτ , for every
l = 1, . . . , κ, which requires about 2κ2NJNτ flops, and then compute the sum in
(2.25)—κNs more flops. The Wiener integral ξk,l =

∫∆
0 mk(s)dyl(s) reduces to a

one-dimensional Riemann integral by integrating by parts. In addition, computations
of the integrals ξk,l for different k and l can be performed in parallel. As a result,
computational complexity of the Wick polynomials ξα is negligible as compared to
other procedures of S3.

The total number of flops NS3 is then NS3 = 2κ2NJNτ +Nsκ. Given the precision
of the approximation, the number κ2 will grow with d as Cd, where C is some constant
depending on the type of the basis (but not on d), so NS3 ≤ Cd(2NJNτ +Ns).

If the splitting-up algorithm is used, one has to perform Nτ steps of the type
(4.2). Each step requires solving a parabolic equation. To estimate the corresponding
number of operations, assume that a finite element method is used and the resulting
linear system is solved using an iterative procedure without preconditioning. The
matrix of the system is of dimensionNs×Ns, sparse and nonsymmetric (since operator
L∗ is not self-adjoint). Then one iteration requires about CdNs flops, where Cd is a
constant depending on d and on the particular numerical algorithm (see [1]), and
the total number of iterations is proportional to the condition number of the matrix
[36]. For nonsymmetric matrices, the condition number is proportional to at least
(lnNs)d−1 [1, 6]. Thus the total number of operations required to solve the equation on
one step is CdNs(lnNs)d−1. One also has to compute a certain number of exponential
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TABLE 4.1
Comparison of the splitting-up approximation and the S3.

t = 1 (Step 100) t = 2 (Step 200)
Splitting-up S3 Splitting-up S3

Flops 8161001 397431 16321601 788431
N50 32 27 20 16
N75 61 55 47 36
N95 93 90 85 81

functions, but this can be done much faster and we disregard it. The total number of
on-line operations is then Nsp−up = NτCdNs(lnNs)d−1.

As a result,

NS3

Nsp−up
≤ C

Cd

( C

lnNs

)d−1[2NJ
Ns

+
1
Nτ

]
.

Theorem 2.4 shows that for any d the splitting-up algorithm and S3 have errors of
the same order in ∆ already for N = 2, n = 1, so we can take 1 + 2r + r(r − 1)/2 as
the lower bound on NJ , where r is the dimension of the observation process. Since
Ns usually grows with d, we can expect S3 to have an advantage over the splitting-up
algorithm in the following situations:

(1) when the estimation of u is required at one time moment after a long obser-
vation period (Nτ � 1). This is characteristic for some tracking problems.

(2) when the dimension d of the state process is large.
To conclude this section we compare (numerically) the on-line performance of S3

and the splitting-up method for one simple example.
For the test model, both signal and observation processes were chosen one-dimen-

sional with the signal

dx(t) = 0.1 cos(2x(t))dt+ 0.14dw̃(t), x(0) ∼ N (0, 0.1),

and the observations

y(t) =
∫ t

0
arctan(x(s))ds+ 0.04w(t);

obvious modifications were made to reduce the last equation to the standard form
(2.1). We took T = 2 and ∆ = 0.01.

The interval [−1, 1] was taken as the spatial domain; it was discretized uniformly
with step 0.01. Functions sin(πl(x− 1)/2), 1 ≤ l ≤ 15, sampled at the points of the
spatial grid served as the basis {el}.

For the S3, multiindices α with |α| ≤ 8, d(α) ≤ 1 were used. (This corresponds
to the set J1

8 in Theorem 2.4.)
Given the trajectory of the signal process, 100 independent observation trajecto-

ries were simulated; for each trajectory, the filtering density was computed at moments
25∆, 50∆, . . . , 200∆, using both the S3 and the splitting-up method.

The results are presented in Table 4.1. They are borrowed from [13]. In the table,
“flops” stands for the total number of the on-line floating point operations (additions
and multiplications) that it took to compute the filtering density at the given time
moment; N50 (resp., N75, N95) is the number of times the value of the signal process
was in the 50% (resp., 75%, 95%) confidence interval defined by the computed density.
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We see that S3 results in substantial reduction (up to 20 times) in the number
of on-line computations without significant loss of accuracy. The decrease in the
number of on-line computations should be even more conspicuous as the dimension
of the observation process grows.

Appendix. To make the exposition as self-contained as possible, we will prove
Theorem 2.1 and give some other results used in the proof of Theorem 2.2. Most of
the results come from [30].

The summation over repeated indices convention is still in force. We also use the
notations introduced at the beginning of section 3.

To begin with we recall the celebrated Cameron–Martin development (see, e.g.,
[7] and also [16, 19]).

THEOREM A.1 (Cameron–Martin development). Let Bs = (B1
s , . . . , B

r
s), 0 ≤ s ≤

T , be an r-dimensional Brownian motion and η be a measurable functional of the path
{Bs, s ≤ T} such that Eη2 <∞. Let {ci(t)}i≥1 be an arbitrary complete orthonormal
system in L2([0, T ]). For α = {αlk} ∈ J set

ξα(B) =
∏
k,l

Hαlk

( ∫ T
0 ck(s)dBl(s)

)
√
αlk!

.

Then (ξα)α∈J is a CONS in L2(Ω,FBT ,P), where FBT = σ(Bs, s ≤ T ), and

η =
∑
α∈J

E[ηξα(B)]ξα(B),(A.1)

Eη2 =
∑
α∈J

(E[ηξα(B)])2.(A.2)

The series (A.1) converges in L2(Ω,P).
Let {zlk}, l = 1, . . . , r, k = 1, 2, . . . , be a sequence of real numbers such that∑

k,l |zlk|2 < ∞. Set ml
z = mk(s)zlk, where {mk} is a CONS in L2([0, t]). We also

define

Ps(z) = exp
{∫ s

o

ml
z(τ)dyl(τ)− 0.5

∫ s

0

r∑
l=1

|ml
z(τ)|2dτ

}
and denote

∂α

∂zα
:=
∏
k,l

∂α
l
k

(∂zlk)αlk
.

Proof of Theorem 2.1. It is known (see, e.g., [34]) that for every t, x the UFD
u(t, x) is a measurable functional of the observation process y(s), s ≤ t. By Girsanov’s
theorem y(s) is a Brownian motion on the new probability space (Ω,F , P̃) (recall that
dP̃ = ρ(T )dP). Then by Theorem A.1 we have

u(t, x) =
∑
α∈J

Ẽ[u(t, x)ξα(y)]ξα(y),(A.3)

Ẽ|u(t, x)|2 =
∑
α∈J

(Ẽ[u(t, x)ξα(y)])2,(A.4)
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where Ẽ stands for the expectation symbol with respect to measure P̃, and the right-
hand side of (A.3) converges in L2(Ω, P̃).

Let us denote

ϕα(s, x) :=
√
α!Ẽ[u(s, x)ξα(y)].

It is a standard fact (see, e.g., [16]) that

ξα(y) =
1√
α!

∂α

∂zα
Pt(z)|z=0,

and so for every s ≤ t

ϕα(s, x) =
∂α

∂zα
Ẽ[u(s, x)Pt(z)]|z=0 =

∂α

∂zα
Ẽ[u(s, x)Ps(z)]|z=0,

where the second equality follows from the martingale property of Ps(z) on (Ω, P̃).
Now to prove (2.8) and (2.9) it remains to show that the system of functions {ϕα}, α ∈
J , is a solution to the S-system (2.6). For this purpose it will be convenient to treat
the UFD u(t, x) as the solution of the Zakai equation (2.4). Since Ps(z) satisfies the
Ito stochastic differential equation

dPs(z) = ml
z(s)Ps(z)dy

l(s), s ≤ t; P0(z) = 1,(A.5)

by the Ito chain rule

u(t, x)Pt(z) = p(x) +
∫ t

0
(L∗u(s, x)Ps(z) + hl(x)ml

z(z)u(s, x)Ps(z))ds

+
∫ t

0
(hl(x)u(s, x)Ps(z) + u(s, x)ml

z(s)Ps(z))dy
l(s).

Taking expectation Ẽ on both sides of the last equality and setting ϕ(s, x, z) :=
Ẽu(s.x)Ps(z) we obtain

∂ϕ(s, x, z)
∂s

= L∗ϕ(s, x, z) +ml
z(s)h

l(x)ϕ(s, x, z), 0 < s ≤ t,

ϕ(0, x, z) = p(x)1{|α|=0}.
(A.6)

Applying the operator 1√
α!

∂α

∂zα on both sides of (A.6) and setting z = 0 we get
(2.6).

To complete the proof of Theorem 2.1 one needs to prove that the right-hand side
of (2.8) converges also in L1(Ω,P). This follows in a simple way from the convergence
in L2(Ω, P̃) and Cauchy–Schwartz inequality [30].

In what follows we give some additional properties of the solution of (2.6) in the
case r = 1; these properties are used in the proof of Theorem 2.2. Generalizations to
the general case r > 1 are straightforward.

PROPOSITION A.1 (see [30]). Let {ϕα(t, x)}α∈J be a solution of (2.6). Then for
each α with |α| = k

ϕα(t, x) =
∑
σ∈Pk

∫ (k)

F (t; sk;x)miσ(k)(sk) . . .miσ(1)(s1)dsk, k > 1,

ϕα(t, x) =
∫ t

0
Tt−s1hTs1p(x)mi(s1)ds1, k = 1,

ϕα(t, x) = Ttp(x), k = 0,

(A.7)
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where (i1, . . . , ik) is the characteristic set of α (see the beginning of section 3 for
notation).

In addition,

∑
|α|=k

ϕ2
α(t, x)
α!

=
∫ (k)

|F (t; sk;x)|2dsk.(A.8)

Proof. Representation (A.7) is obviously true for |α| = 0. Then the general case
|α| ≥ 1 follows by induction from the variation of parameters formula.

To prove (A.8), first of all note that∑
σ∈Pk

miσ(k)(sk) . . .miσ(1)(s1) =
∑
σ∈Pk

mik(sσ(k)) . . .mi1(sσ(1)).

Indeed, any term on the left corresponding to a given σ0 ∈ Pk is equal to the term
on the right corresponding to σ−1

0 ∈ Pk.
Then we can write (A.7) as

ϕα(t, x) =
∫ (k)

F (t; sk;x)Eα(sk)dsk.

Introducing

G(sk;x) :=
∑
σ∈Pk

Tt−sσ(k)h . . . Tsσ(2)−sσ(1)hTsσ(1)p(x)1sσ(1)<···<sσ(k) ,

we can rewrite it further as

ϕα(t, x) =
1
k!

∫
[0,t]k

G(sk)Eα(sk)dsk.(A.9)

Since for each x G is a symmetric function from L2([0, t]k) and {Eα/
√
α!k!, |α| =

k} form a CONS for the symmetric part of the space, we have

G =
∑
|α|=k

cαEα√
α!k!

with some cα ∈ R. Then from (A.9) ϕ2
α/α! = c2α/k! and so∑

|α|=k

ϕ2
α(t, x)
α!

=
1
k!

∑
|α|=k

c2α =
1
k!

∫
[0,t]k

|G(sk;x)|2dsk

=
1
k!

∫
[0,t]k

∣∣∣ ∑
σ∈Pk

Tt−sσ(k)h . . . Tsσ(2)−sσ(1)hTsσ(1)p(x)1sσ(1)<···<sσ(k)

∣∣∣2dsk
=
∫ (k)

|F (t; sk;x)|2dsk,

which proves (A.6).
Remark A.1. In this article we needed WCE (2.8) only at the final point of the

time interval. However, it is readily checked that, due to Fyt -measurability of UFD
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u(s, x) for all s ≤ t, the statement and the proof of Theorem 2.1 remain virtually
unchanged if, in (2.8) and (2.9), we replace t by any s ≤ t. This implies in particular
that equality (2.16) holds not only for grid points ti but for every s ∈ [ti−1, ti].

Remark A.2. If r = 1 and |α| = k, then, by [17, Theorem 3.1],

ξα =
1√
α!

∫ t

0

∫ sk

0
. . .

∫ s2

0
Eα(sk)dy(s1) . . . dy(sk).

This gives an alternative (but equivalent) form of WCE (2.8) in terms of multiple
Wiener integrals. A similar expansion holds for an arbitrary r.
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